

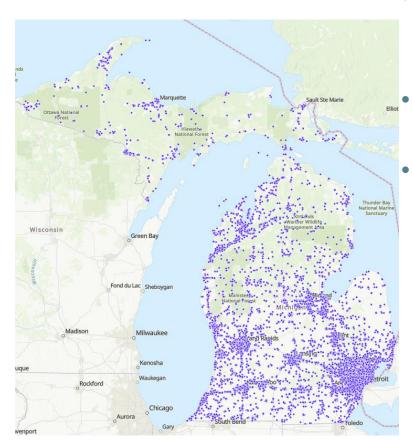
Michigan's Investigative Approach for Petroleum Volatilization to the Indoor Air Pathway (VIAP)

Matthew Williams,
Volatilization to the Indoor Air Specialist
Michigan Environment, Great Lakes, and Energy
WilliamsM13@michigan.gov

Agenda

Foundation of Michigan's Approach

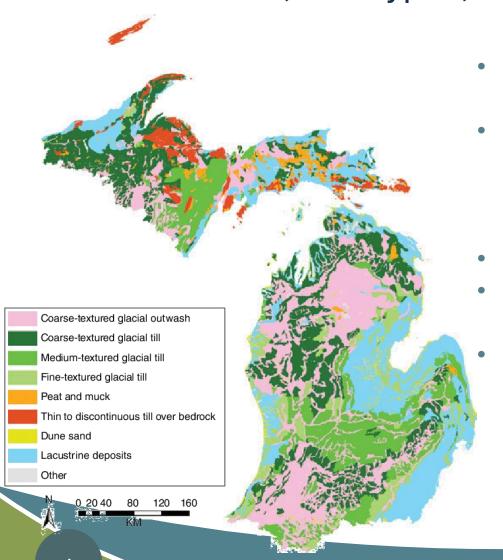
Michigan Guidance Document for the Volatilization to the Indoor Air Pathway (VIAP)



Step-wise approach for petroleum

Background

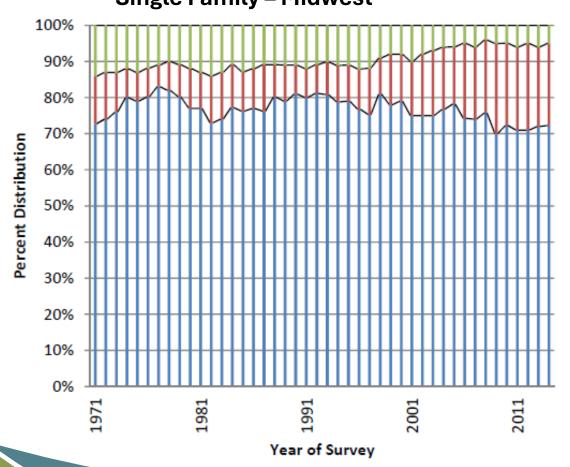
Part 201 and Part 213


Part 201 Facilities

- Part 201 is primarily concerned with environmental remediation from a broader range of releases
- Part 213 addresses leaking underground storage tanks (6,000+ open)
- Both:
 - Parts of the Natural Resources and Environmental Protection Act (NREPA)
 - Provide a framework for managing and mitigating environmental contamination
 - Are not exclusive to petroleum
 - Terminology is not the same
 - Causation liability

Background

Glacial, Soil Types, and Topography


- A diverse landscape
 - Flat plains to rugged hills
- Two peninsulas
 - Elevation change of 1408 feet
 - 571 feet -shore of Lake Erie
 - 1979 feet Mount Arvon
- Heavily influence by glaciers
- Lots of water multiple lakes, ponds, rivers, and streams
 - Significant sand dunes along the Lake Michigan shoreline, some reaching heights over 200 feet

Background Depth to Groundwater < 5' bgs 65% of Michigan has groundwater < 15' bgs <10' below the ground surface! *Data from MSU Extension 2015

Background

Foundations

Type of Foundations
Single Family – Midwest

Crawl Space

■ Slab or Other Types

■ Full or Partial Basement

77% (average)
 have basements!

In short...

- Statue must address a wide range of sites where shallow groundwater and basements are common
 - Utilities and conduits are likely to be near groundwater
 - Deeper vapor sampling is not always possible
 - Separation Distances are not very helpful
- VIAP

Volatilization to the Indoor Air
Pathway (VIAP)

Vapor Intrusion (VI) Direct Volatilization

Data Evaluation

 Database with data from statefunded sites

Vapor Trends: A 5-Year Data Journey 2019, 2020, 2021, 2022 and 2023

A Despension of PELPs caparolate cofesies' accountlistique et al est hat contained to the periodes and of fortunies' compounds. All work is state

Quick Thoughts

Your hard of hazards at substrate each tried.

Number of hazards at substrates each tried.

Total each ser of super substrate.

Total each ser of super substrate.

Tiese a hazards substrates was detected in a surepla.

Solid each substrate substrates and detected in a surepla.

Solid each substrates and substrates and substrates and substrates are substrates.

Persolates that of the substrates and substrates and substrates and substrates and substrates.

TCS, PCS, and Ci- facilities above a observice.

Solid each substrate substrates and su

Section	Basanton Salutumo	Aumber
_		
-	Research continue and	3650
2	Sichless (Norsemathur)	1211
3	er & proliphora	2880
4	Tolsons	2616
4	Chloropolhana	2934
6	Tetrachinerathylene	2941
2	n folony	2384
	1,3,4 februarity/fear same	2390
	Dhyberator	1331
1.0	2.3.4 Scientifolganter a	1438

Sect	Sumber	
3	Tutowitin southylana	366
2	Tricklerattplace	383
3	Disarium	- 11
4	Banana	28
5	2.3.4 Sciencifolgrapher e	23
6	Dhybersene	70
2	1,500 Memberses	10
	Markyltyckycenters	69
	Feetana	
1.0	1.2.4 Schoolbalker sans	34.

Detections v Lit Times Griteria (in alphabetical order)				
Managhtan Saladaman	Sunter			
1,3,3,2 (lateathlescathars	4			
1,3,3 feinathpliae sana	3			
L2.4 Scientifipher serv	34.			
1,3 dichlosopharu	- 1			
1,3,6 Scinatiplicar care	33			
1,500 Membersons	31			
2,3,4 firimethylporter e	30			
Lenone	24			
Disarium	23			
risch, 2 Einhäurunt bakern	- 1			
Sichland Burnenthau	3			
Dhybunana	33			
happingsylham san a	- 1			
Mathyltschapantaca	21			
militarium	4			
Pertura	21			
Sectlety/Renoves	34			
Tutrachlessethylana	31			
Trickles out to bear	31			
Yarylohloside	4.			

 The data was collected for a variety of purposes and reasons and may not be representative of the vapor source.

 -Most of the sites, based on names and funding obtained, are associated with a gas stations

-Chlorinated compounds and petroleum compounds were commonly detected at a facility. However, the potential unacceptable risks from both types of compounds was only identified on less than 5% of the sites

-The use of 10x a criterion is based on professional judgement and the potential that if a "true" site-specific criteria was developed, it would still exceed criteria and site-specific conditions

-Dichlorodittuoromethane (R-12), Chloromethane (R-40) and even chloroform, have uses as a refrigerant and are commonly detected. However, they are not commonly associated as a

Blatine.

All samples utilities been all shats with uspor sample identifiers -Stee were assumed to know a petitioleum release alle to the personne of the remains, employed personnel at 3,3,4. Streets operation, pretting, or 1,3-Stoblosshoonee -These hatterisks substances were based on the cumber of three identifier above otherion.

-Major exterior was lasted on the 0.02 attenuation into the indo

 Exceedance of a criterion disea not treat an unacceptable dis Abbredations used: 705-7/ichloroethylene, PCF-Tetrachloroethylene, Cis-cis-r,3-Clichlusoethylene

Date of Analysis	Min	Wan	Office	Time(v) Detected	Tiren(i) akeye Orkeria	Betested - 10 Times likeur Dilloria
3,1,3.7k is blue out bases 3,1,3,3. To be as blue out bases	1.4	7,696+94	2,704-05	312	- 2	- 2
1,1,2,2 Tetra Harathan		61.0	38	- di	- 4	4
1,1,2 Vehille rathers 1,3,3 field bent flores there	2.6	2,000+00	1 60	12	- 3 ED	- 1
1,1,0 hold to the Value of Sans		170				-
L-1 Girbin anuthylanu	23	183	2,000 mil	32 6		-
1,2,3 Didelterhoranse	34.	27	840	-1	- 2	- I
3,3,1-feitherproper 3,2,6 bineshylamore	1.0	5,000+04	2,100-00	413	12	- 2
1,2,4 Friedrichter sons 3,3,6 Trieneltyllum sons			39			
3,2,6 Trienthyllumous	13	1.69+36	2.100-03	3110	3 52	34
1,2 Gibraria Enthropopaca	2.0	13	10	-1	10	-
1,3 diktornoribara 1,3 diktorbarana		209	3,000-04	- 12	2	- 1
1.2 Cabba nathana	1.6 3.94	5.306+04				
1,3 Cabba sathura 3,3 Gabbangsapura		1.6	252	38	2	2
3,3,6 Trienellyflum one	1.3	1.306+96	3.336-63	200.8	24	77
3,5 ficturine e 1,5 fictionshouse e		1,201+03	300	618	12	77
L. d. Einfelieur barr une e	1.6	18.0	230	41.	- 2	- 11 P
1,6 Birbinarburan a 1,2,6 Biroshylpurtura	1.8	6.606+04	230648	3126	70	30
2 fluturer a (HEE) 2 februarie - Alberta	30	3.600+05 50	80 902	346	- 10	-
.http://pagenators		500	10	312	- 0	
interes	13 17	3,694,96	3.006-00	341	3	-
Antachda	1.5	1.2	2300	28	- 2	l-
Jarylanitela Banana	1.3	2.6 2.600+36	120	7 3200	29	31
Exercise Control			3.100-03			
Erzendue ana Erzendukkou mekken	1.3	14	68	3 47		-
States for the care	213	184	10	3176	10	- P
Esperatura Esperantificate	1.2	3.0	750 960	33	2	-
Carton doublits	3.30	63	10	416	- 0	
Carbon totaphilosisu	E36 E3	1.306+93	10	46	100	- 2
Orleanbarrance	1.3	1,698+99	2,100-03	311	3	-
Obrother		1 700-10	3,439-69	18		
Observed and	1.3	1.304+93	33360	312	- 1	- 12
ris 1,2 dichloroshylana	1	5,306+94	280	283	20	- 1
six I, I Cirkle spraggless	2.65	2.38496	2.206105	0.00	20	-
Cydeberana Edwarachlasarachana						-
Dichlandiff, sensether e Early other	1.2	1.200+05	2204-04	3375	3	2
Eisebyl arban	3.4	.159	10	*	10	0
Estaponyal Dibar Ulbaral	1.3	8.2 6.306+04	6.304-05	316	- 0	-
Disharana		2,200+05	340			33
Displacement Displacements whether Property (1994)	1.3	3.6	10	1126.	- 29 - E0	- 1
ACCHO 0850	2.6	26	15	3.6	- 2	- 1
Basana haprapyl-Mrahal	12	1.500+00	80	216	E	-
he accombination	12	1,300+00	83 80		25	-
Segregolisensens en lie je Sylvens		1,606+05		317	100	D.
Histhykyringserians	2.63	6,500+06	3.400-84	319	- 18	21
Mathylana ebinata Hidhylanbaghajadhar	1.7	1.600+00	10		E E	-
Kaphihalara - Buthalarara	28 83	260	36	16		-
		1.600+00	2,000-03	11.	13 B	D-
ellepters	1.2	2,606+06 3,406+06	2336-04	1186	13	-
e Fragilianiana nikylena		2,898+95		2160	- 10	-
Portary	2.6 2.6	1.806+02	3.004-04	618	.10	31
Pantana san disipihan sana		3.300+30	24		20	36
litjeren tarifi-tylkenene	6.7	8.7	1,000-03	411	B)	
tectory ficial idealed		3,600+10			10	-
tertiory letylmothy lether	1.3	3.2	10	- 5	80	-
Tateachlecoethylene	1.3	2,200+05	3,430-03	2316	156	31
Tatrahydra fasar Telluma	1.2 3.73 3.73	1.600+06	3,000+04	2109	- 2	-
Sans C.S. Birkinstelly less	2.01	1.698+99	2,636-63	All		-
ture 1,3 Eirblemstryken ture 1,3 Eirblemsgrapplen	1.4	14	10	1	B)	D-
	-14	5,000+36	7.604-91	533	130	31
Trithir offs our methods Viryl offseids	3.69	2,300+00	1606-84	38	16	-
Dhare	34.	10	80 80	A	10	-
1 ft ylens	0	2	10	0	80	- 0

Available Data

 All data collected on state-funded sites using the same lab and sampling procedures

- Identified:
 - COCs
 - COCs above criteria
 - Sites
 - more

Overview

_	
Total number of sites:	350
Number of hazardous substances evaulateda:	76
Total number of vapor samples:	4031
Times a hazardous substances was detected in a sample:	9501
Times a hazardous substances was detected above a criterion:	681
Site with petroleum compounds:	334
Petroleum sites with potential riskb:	90
Sites with TCE, PCE, and Cis- detections:	305
TCE, PCE, and Cis- facilities above a criterion:	63
Sites with both risks present!	16

									DET	TECTIO	<u> </u>						ı	EXCEE	DE CR	ITERIA	1		
2019	2020	2021	2022	2023	Project	Tetrachbroethyene	Trichlo roet hyle ne	ck-1,2-Dichloroethylene	Benæne	Ethylbenzene	Methylcyclopentane	2,2,4-Trimethylpentane	Pentane	1,3- Dich brobe reeng	Tetrachbroet (Trich to roet hy lene	ck-1,2-Dichloroethylene	Benzene	Ethylbenzene	Methylcyclopentane	2,2,4-Trimethylpentane	Pentane	1,3- Dichloroberzene
				X	108 ADAMS SITE/108 ADAMS STREET, BAY CITY	1	0	0	2	2	2	2	2	0	0	0	0	0	0	0	0	0	0
		\perp		Х	1111 west nine mile road	4	0	0	4	4	4	3	4	0	1	0	0	0	0	0	0	0	0
	Х				119 EAST WESLEY STREET	4	0	0	4	4	0	4	0	0	0	0	0	0	0	0	0	0	0
				X	125 EAST MAIN STREET	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Х	Х				1250 MADISON AVE SE	38	49	2	26	28	0	15	0	10	0	20	0	0	0	0	0	0	0

What types of sites

- Brownfield Site Assessments
- Former gas stations and drycleaners
- Brownfields

Quick Take on the Findings:

TOP 10 DETECTIONS								
<u>Rank</u>	<u>Number</u>							
1	1 Bromofluorobenzene							
2	Dichlorodifluoromethane	2189						
3	m & p - Xylene	1934						
4	Chloromethane	1918						
5	Toluene	1913						
6	Tetrachloroethylene	1632						
7	1,2,4-Trimethylbenzene	1311						
8	o-Xylene	1310						
9	n-Heptane	1195						
10	Ethylbenzene	1057						

	TOP 10 ABOVE CRITERIA								
<u>Rank</u>	<u>Number</u>								
1	Tetrachloroethylene	137							
2	2 Trichloroethylene								
3	Chloroform	64							
4	Benzene	58							
5	Methylcyclopentane	48							
6	2,2,4-Trimethylpentane	47							
7	Pentane	42							
8	Ethylbenzene	38							
9	1,3-Dichlorobenzene	36							
10	cis-1,2-Dichloroethylene	19							

Quick Take on the Findings:

TOP 10 DETECTIONS						
<u>Rank</u>	<u>Number</u>					
1	Bromofluorobenzene	2793				
2	Dichlorodifluoromethane	2189				
3	m & p - Xylene	1934				
4	Chloromethane	1918				
5	Toluene	1913				
6	Tetrachloroethylene	1632				
7	1,2,4-Trimethylbenzene	1311				
8	o-Xylene	1310				
9	n-Heptane	1195				
10	Ethylbenzene	1057				

Detections > 10 Times Criteria (in alphabetical order)							
	<u>Hazardous Substance</u>	<u>Number</u>					
	Tetrachloroethylene	34					
	Trichloroethylene	34					
	Benzene	29					
	Methylcyclopentane	27					
	Pentane	21					
	2,2,4-Trimethylpentane						
	Ethylbenzene	17					
	Chloroform	9					
	1,3-Dichlorobenzene	8					
	cis-1,2-Dichloroethylene	8					
	1,2,4-Trimethylbenzene	6					
	sec-Butylbenzene	6					
	1,3,5-Trimethylbenzene	4					
	n-Heptane	4					
	Isopropylbenzene						
	Vinyl chloride	3					
	1,2,3-Trimethylbenzene	1					

EGLE's VIAP Guidance Document

Electronic Guidebook broken into different Volumes

- Volume 1 Volatilization to the Indoor Air Pathway (VIAP) Overview
- Volume 2 Investigation Methods for the Volatilization to the Indoor Air Pathway (VIAP)
- Volume 3 Investigation Approach for Volatilization to the Indoor Air Pathway (VIAP)
- Volume 4 Investigative Approach for Petroleum Volatilization to the Indoor Air Pathway (VIAP)
- Volume 5 Response Activity for the Volatilization to the Indoor Air Pathway (VIAP)
- Volume 6 Volatilization to the Indoor Air Criteria
- Volume 7 Updates
 - Guidance document for the Volatilization to the Indoor Air Pathway (VIAP)

New Standard Operating Procedures Volume 2 – Currently undergoing internal review

Collecting Soil Gas from Low Permeability Subsurface Material

Crawlspace Sampling via USEPA TO-15

Sampling Vapor Utilizing an Active Sorbent Analytical Method to Support Vapor Intrusion Investigations

Conduit Liquid Sampling

Conduit Vapor Sampling via TO-15

Conduit Vapor Sampling via Passive Sampling

Conduit Sediment Sampling

Pneumatic Testing of Subsurface Soil to Evaluate Permeability and Vapor Transmission

Establishing a Liner Diffusion Coefficient

Building Pressure Control/Controlled Pressure Testing Building Pressure Testing to Prove Out an Active Vapor Mitigation System Determination of Advective or Passive Flow of Vapors for Methane

New Vapor Insights or FAQ's

Evaluation of Conduits and Sewers from Petroleum Releases

Assessing the Potential for Unacceptable Risk Without Soil Gas Data Due to Shallow Groundwater

Is shallow soil gas (<5' below ground) representative of a soil gas sample directly beneath a slab on grade structure?

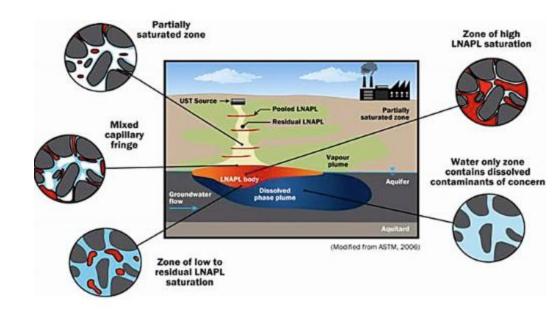
What is Soil Sampling good for when assessing the Volatilization to the Indoor Air Pathway?

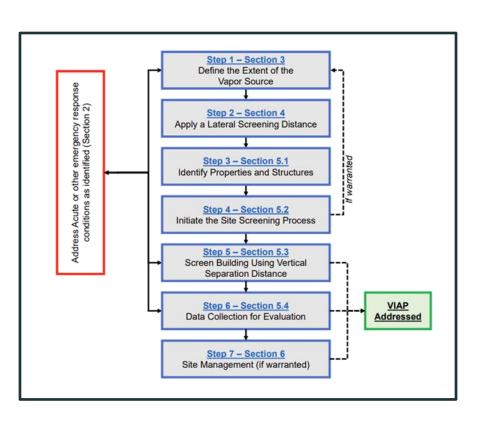
How to Assess the Potential for Unacceptable Risk to Occur Without a Building

Evaluate Permeability and Vapor Transmission

Shutting Down a VMS - Speed at which vapor migrates/Time to Equilibrate

What is a Leaky Building?




Figure 3-2. The multiphase system of a typical LNAPL body (CL:AIRE 2014 [26] ▷).

Investigative Approach for Petroleum Volatilization to the Indoor Air Pathway (VIAP)

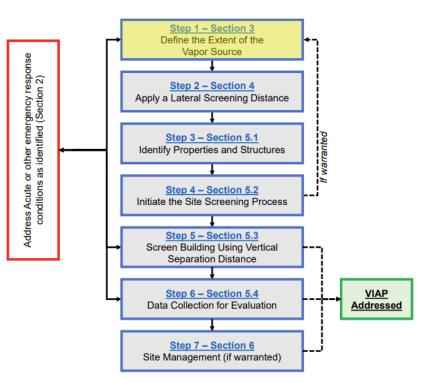
Volume 4

Volume 4 Overview

- Identifies a step-wise approach
- Soil concentrations along with other lines of evidence can be used to establish the extent of NAPL
- Risk evaluation is based on NAPL and GW only
- Links EGLE'S 2023
 Petroleum NAPL
 Guidance and other key information

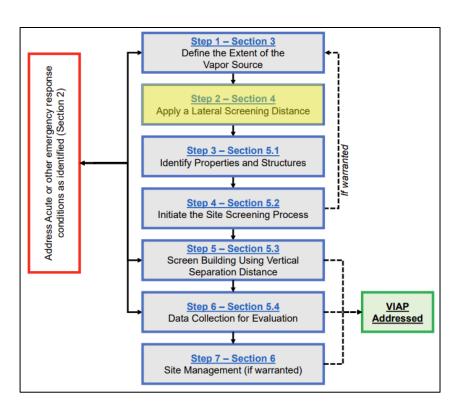
Volume 4

Focus for Petroleum


- Based on data unacceptable risks are associated with:
 - Non-aqueous phase liquid (NAPL) is near or entering structure
 - Enters through a sump
 - Seeps through a wall
 - Mobile NAPL has entered utility that is connected to structure; or
 - Contaminated groundwater is entering structure

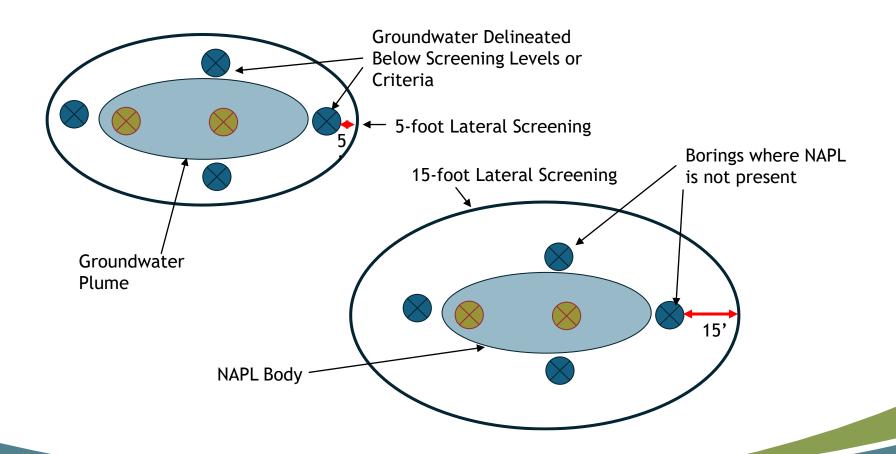
NOTE: If these don't exist, initial CSM should be VIAP not likely current risk... still need to consider **future risks**

Step 1

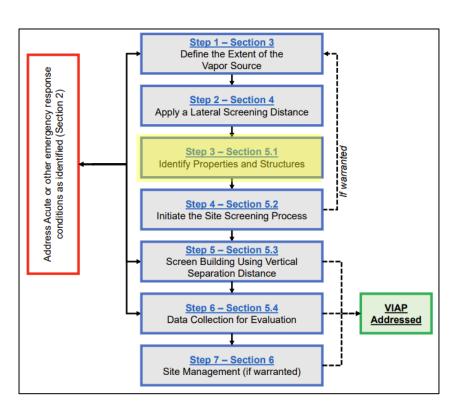

Define the Extent of the Vapor Source

- Defines extent of release and where there is reasonable potential for exposure
- NAPL
 - Includes residual, mobile, and migrating NAPL
 - Groundwater
- Based on depth of groundwater below grade
- Based on current or reasonably anticipated future land use
- Need to consider residential criteria for offsite migration

Step 2


Apply a Lateral Screening Distance

- For well characterized vapor source:
 - 15-feet from NAPL
 - 5-feet for groundwater contamination (i.e., dissolved-phase sources)
- 30-feet LIZ may be applied for facility that is not well characterized
- Physical features or obstructions (e.g., a road) that require that spacing of is long distance and extent of contamination is interpolated


What does "well characterize" mean?

Step 3

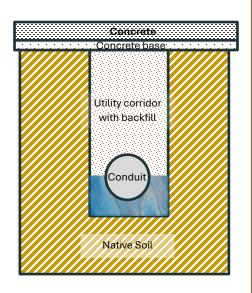
Identify Properties, Structures, and Conduits

 Identify all properties, structures, and conduits within the lateral inclusion zone

Step 3

Necessary Information

Table 5-1 Information on the Buildings, Properties, and Utilities Required

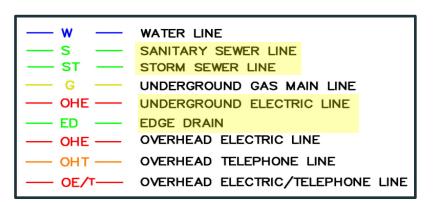

Building, Property, or Utility	Information required
Properties	Lot linesCurrent use or property restrictions
Structures	 Depth below grade of current structure Construction materials and methods Foundation Presence of the sump or other features that may allow for the direct volatilization to occur
Utilities	 Location Depth below ground Ability to transport vapors and have a mobile NAPL vapor source enter into it
Backfill surrounding the Utilities	Type of soil found at the property and throughout the facility

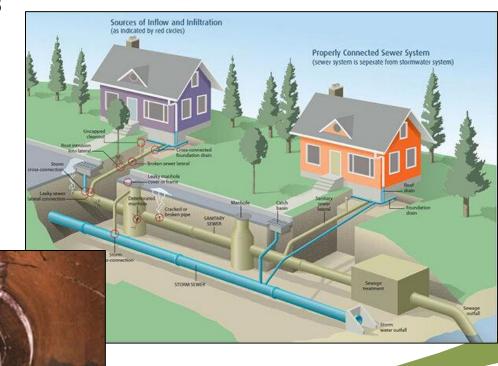
Conduits

2 situations that must be considered

Within a Conduit

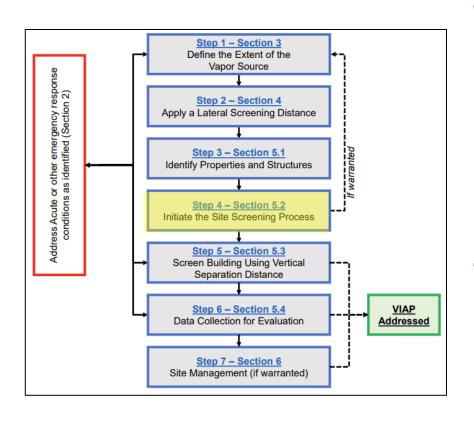
- Must be in contact with mobile NAPL
- Can not be full or under pressure (need head space for vapor migration)
- Must connect to a structure
- Can result in direct path for vapors into structures


Within the Backfill


- Must be more permeable than surrounding soil
- More of a
 characterization issue
 as source can go where
 we may not expect do
 not need to chase
 vapors any further than
 typical LIZ

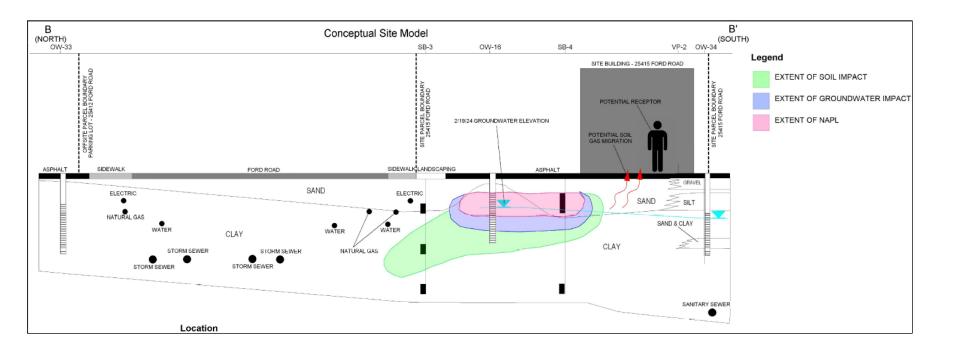
Utilities vs Conduits

- Conduits must be:
 - Connected to a structure
 - Able to transport vapors



Step 4

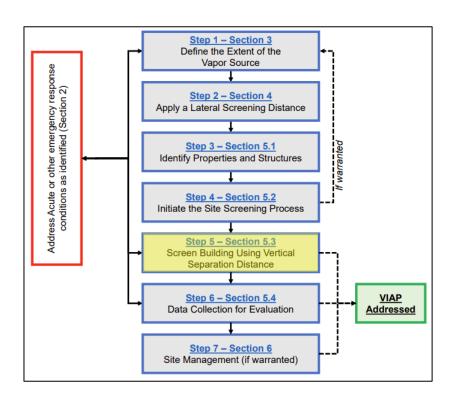
Initiate the Site Screening Process


- Need to understand structures and their construction to be able to vertically screen out structure from needing further evaluation
- For conduits, need to know elevation of utilities and where mobile NAPL located

Can you answer the following?

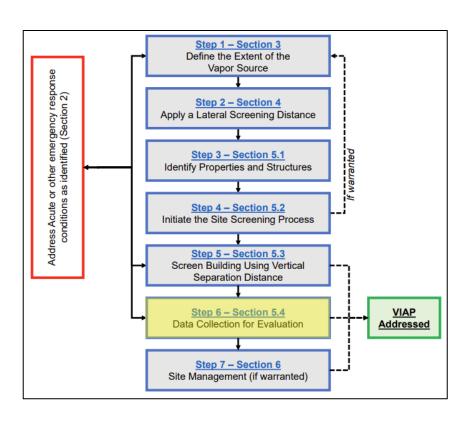
- Is the depth of groundwater known?
- What is the depth of the building foundation (only slab or sump) below grade?
- Is the location of the vapor source known?
- Is the distance between the vapor source and the structure known?
- Where are conduits located in relation to the mobile NAPL (if present)?
- Can the mobile NAPL enter the conduit?

Cross Sections



NOTE: Cross sections aid in showing how utilities screen out and which buildings screen In

Step 5


Screen Building using the Vertical Separation Distance

- Based on measured vertical separation distance between slab or depth of any sumps that may allow for direct volatilization to occur and
 - Top of groundwater and/or
 - NAPL vapor source
- This distance is not be estimated

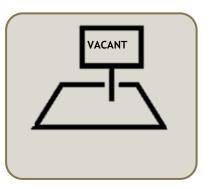
Step 6 Data Collection for Evaluation

- Only for:
 - Those structures that do not screen out
 - There is need to reduce lateral inclusion zone
 - Utilities in contact with mobile NAPL

Soil Gas Data

- Soil gas can:
 - Aid in vapor source and NAPL delineation
 - Be used to shrink LIZ
 - Show there is no current unacceptable risk, and
 - Can also be used to show compliance with the soil and groundwater criteria/screening levels

NOTE: Representative soil gas can show any concentration of groundwater or NAPL is in compliance, but it may not remove need for **land or use restriction** if future use cannot be evaluated.



Data Collection and Evaluation Type of Sites

Structure
over a
Vapor
Source, in
contact and
not in
contact
(Section
C.1.0)

Structure adjacent to a Vapor Source (Section C.1.2) Conduit in Contact with mobile NAPL (Section C.2.3) Structures are Not Currently Present (Section C.2.4)

Data Collection and Evaluation

Sample Events and Numbers

Potential Vapor Source and Distance to Receptor	Soil Gas Sample Results	Minimum Number of Rounds
NAPL ≤ 5-feet	< VIAC	4
NAPL 5 – 10-feet	< VIAC	3
NAPL 10 - 15-feet	< VIAC	2
Dissolved Groundwater Source	< VIAC	1

Building Size	Sample Density	Minimum Number of Sampling Locations
Less than 1,000-ft ²	Not Applicable	2
1,000-feet – 10,000-ft ²	3 + one additional sample per 1,500 ft ² of building over 1,000 ft ²	3
Greater than 10,000-ft ²	9 + one additional sample per 2,500 ft ² of building over 10,000 ft ²	9

Data Collection and Evaluation NAPL entering a Conduit

Known or Suspected	Sampling Frequency of Conduit Vapors	Response Action
Not in Contact	None	Not applicable
In contact and determined to not be entering utility	None	Response Actions may be needed to ensure vapor source will not enter in the future.
Suspected but unconfirmed	Quarterly for 1 year	Any detection in the conduit above the SSVIAC moves the utility into the known vapor source entering into an underground conduit. Response Actions may be needed to ensure vapor source will not enter in the future.
Known – Occurring	Progress sampling weekly until the vapor source is controlled. Structures connected to the utility should be evaluated for the entry of vapors and explosive conditions.	Implement immediate response activity – considered occurring until response activity is complete.
Known – post corrective or response action	Sample monthly for 3 months then quarterly for 3 additional quarters	Any detection above the SSVIAC requires sampling to return to the Known – Occurring sampling frequency

Volume 4 Summary and Quick Takes

- Step-wise approach to petroleum
 - There are other approaches that may be appropriate
 - Need to understand the extent of NAPL
 - NAPL definition includes residual, mobile, and migrating
- Conduits
 - Focus on those utilities that can transport vapors to a structure and are in contact with mobile NAPL

Michigan Department of

Environment, Great Lakes, and Energy

800-662-9278 Michigan.gov/egle

Follow us at:

Michigan.gov/EGLEConnect

