

September 23-25, 2025, Spokane, Washington

Planning, Projecting, and Paying: How to Save Dollars through "Risk-Informed" Decision Making.

Edward Winner, PhD, Vice President of Remediation Products Inc. ed@remediationproducts.com

The Car Salesman Analogy

When you buy a car, what's the game?

- Imagine
- Focus on monthly payments
- If you can afford the payments, you may overlook the total amount!

UST Funds share a similarity:

• If your annual budget balances, you're great.

The Actuarial Reality of "low monthly payments" for UST sites

• Small quarterly expenditures can add up to massive total costs!

Project the costs for prolonging and plan to eliminate the sources of delay.

Loss Development Triangle - Incurred Losses

As of December 31, 2023

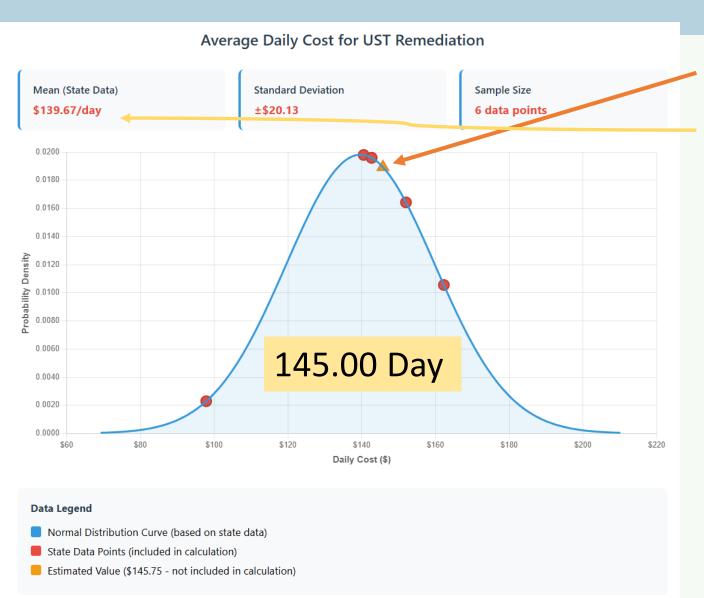
(All figures in thousands of dollars)

Accident	12	24	36	48	60	72+
Year	Months	Months	Months	Months	Months	Months
2019	8,450	12,680	15,920	17,850	18,940	19,250
2020	7,890	11,450	14,200	16,780	17,650	_
2021	9,240	13,890	17,450	19,200	_	_
2022	8,670	12,950	15,840	_	_	_
2023	9,100	13,420	-	-	_	_

Ultimate Loss Projections

Accident	Current	Ultimate	
Year	Incurred	Projected	
2019	19,250	19,250	
2020	17,650	17,933	
2021	19,200	22,290	
2022	15,840	20,992	
2023	13,420	18,851	
TOTAL	85,360	99,316	

Accelerated: Making Final Clean-up in years 4 and 5.


The Problem

Modeling data from multiple midwestern fund states suggests that it would take 100 people working full-time for 33.3 years to complete a 500-site portfolio, assuming current practices remain unchanged.

The estimated cost for the work is \$ 612.3 million.

Estimating a Generic per-Day Costs for Open Sites

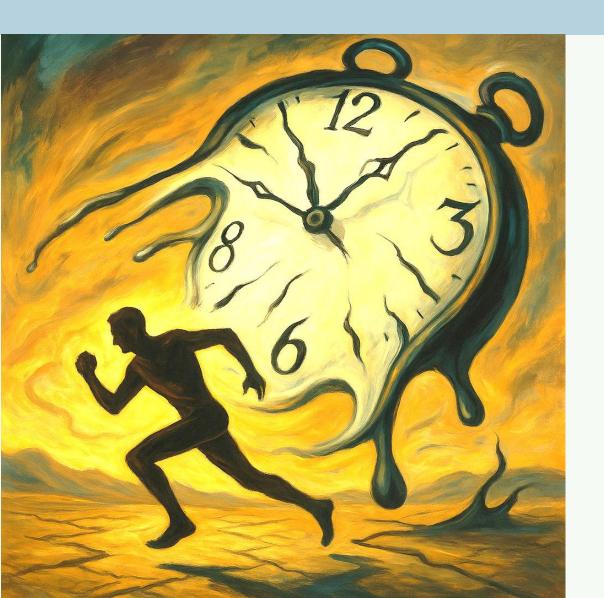
- Estimated value (Sum of individual costs) = \$145.75
- Estimated, from 5 state's data = \$139.67
- Statistical Precision (Pull the lowest & highest)

Mean: \$144.48/day

Standard Deviation: ±\$4.43 (Drops)

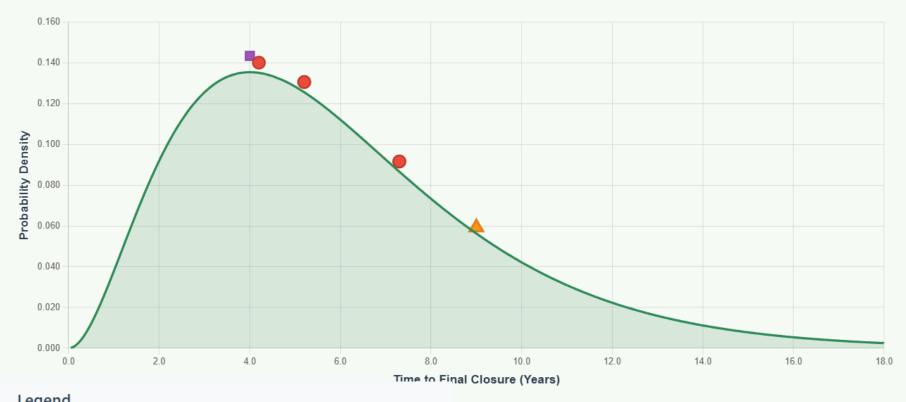
Comp. Accuracy: 99.1% (\$145.75 est vs \$144.48

mean)


**These values are weighted to the central U.S. The multiplier for generalizing:

California statewide average: 1.38x (\$200.00)

New York state average: 1.20x (\$173.00)


Time is not on your side.

- A one-day increase in project duration corresponds to ≈ \$145.00 increase in total project costs.
- Using the average annual inflation rate of the past 15 years (2010–2025), in 10 years, the cost will be ≈ \$187.60.
- Presently, a single month of delay is \$4,350.00.
- Assume the PMs are acting "average"

Time to Final Closure 2024 Data - Chi-Squared Model

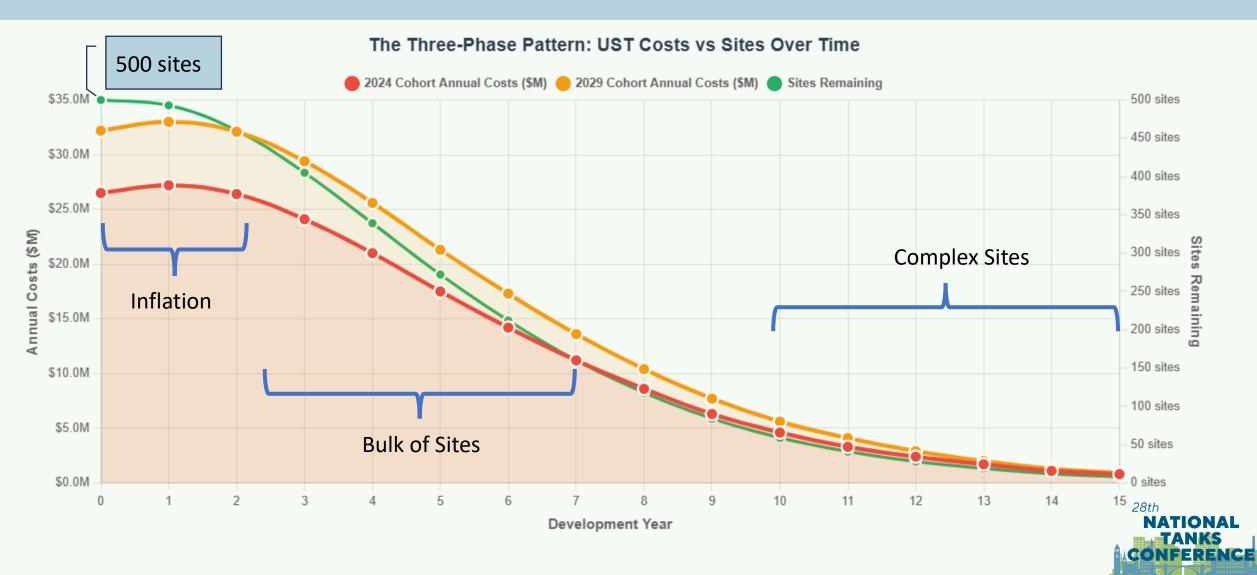
- Mean = 5.84 years
- Standard Deviation = 3.46 years
- Median = 5.35 years
- Mode = 4.0 years
- 98th percentile is 9.2 years

Legend

Chi-Squared Distribution - PDF with k=6 degrees of freedom

Sample Data Points - Observed closure times (n=5)

Target 98th Percentile - 9.0 years constraint


Distribution Mode - Most likely closure time (4.0 years)

5.35 years X 365 days/year X 145.00 per day = \$283,148.75 median site cost

Mixed Portfolio of 500 Sites in Various Phases of Clean-up

Using the data presented, we generate daily costs for 15 years (Accelerated for Illustration Purposes).

What Does the Model Illustrate for Us?

Key Lesson: Early intervention

- In Years 0-2, inflation outpaces savings
- The critical performance period in Years 3-7.
- Later actions face 22-33% higher costs.
- Final 59 sites from the 2024 cohort (Year 10) still generate \$4.6-5.6M in annual costs.

Success Metrics Evolution

- Years 3-7 should focus on the speed of closure.
- Later years emphasize efficiency
 - Allow flexibility in closing those sites.

Structure Early Discernment into Your Program

Your most competent staff should see sites early in the process!

An Effective Suggestion

High-Resolution Site Characterization (HRSC)

EPA's 2023 Study "High Resolution Site Characterization (HRSC) at Petroleum Underground Storage Tank Release Sites – Applicability, Benefits, and Costs"

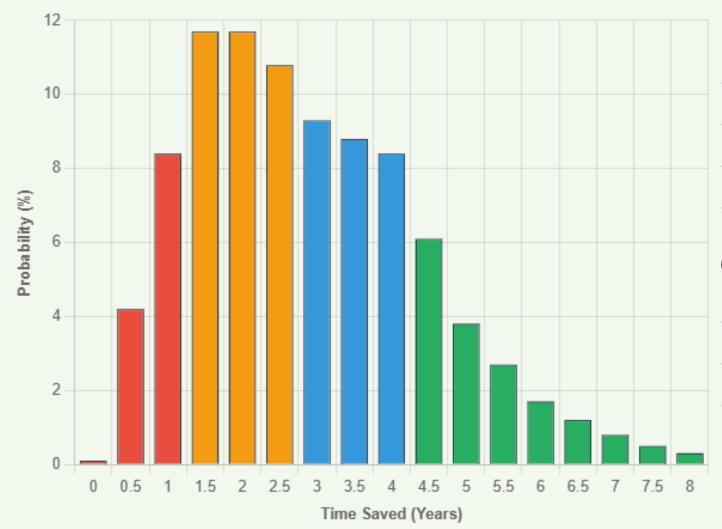
HRSC

- Can save 9 to 19% in project costs
- Sometimes adds 20% to costs
- It also says it could save 40% on some projects.

Time Savings

Save 3.3 years vs 10 years (Historically) and 3.7 years on catastrophic release

I'll use these parameters in the Chi-Squared Model


Updating on Chi-Square Model & Project 60K HSRC Spend

Model Insights

- Optimal Strategy: 70% of sites get
 HSRC at the appropriate time.
- **Savings:** 8 to 15M over 15 years for the 500-site portfolio.
- Time Saved: ≈ 2.5 years median
- **ROI:** 200-400% return
- * Don't confuse this analysis with the EPA analysis.

Time Saving Distribution with HSRC

Distribution Statistics

- Mean Time Saved: 2.7 years
- Median: 2.5 years
- Standard Deviation: 1.6 years
- Range: 4.8 months to 5.5 years

Costs and Returns 500-sites

- Total expenditure: \$16M
- Total savings over portfolio: \$139M
- Net savings: \$123M

HRSC Decision Guide

High-Resolution Site Characterization Investment Framework

Site Evaluation for HRSC Investment

HIGH CONFIDENCE

100-200% ROI

- Sites older than 2 years
- Stalled remediation projects
- Catastrophic releases
- Projected costs >\$400K
- Complex indicators present

MODERATE RISK

25-75% ROI

- Sites 1-2 years old
- Projected costs \$150K-\$400K
- Near break-even threshold
- Early complexity signs
- HRSC = 10-15% of total cost

HIGH RISK

Potential Loss

- Sites under 1 year old
- Projected costs <\$200K
- HRSC >20% of total cost
- Simple sites (quick closure)
- >70% costs already spent

Sites > 2 Years Old

Always use HRSC. No downside risk.

Investment: \$40K-\$75K

Based on site complexity

Sites < 1 Year

Only use HRSC if projected cost > \$200K.

Investment: \$40K maximum

Proceed with caution

Optimal Investment

Spend 15-20% of projected total cost

Capped at \$75K

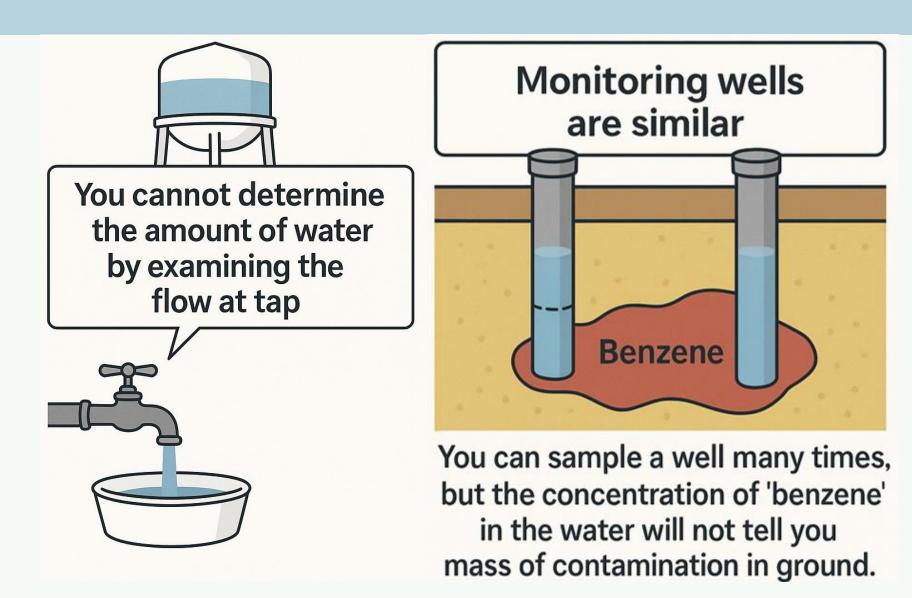
For most effective ROI

Break-Even Point

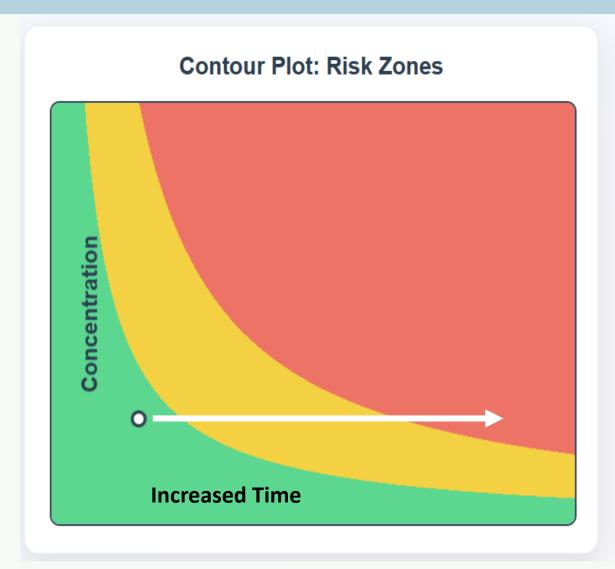
HRSC pays for itself when total site cost
exceeds 3x the HRSC investment
Use this as minimum threshold

Implementation

Structure Early Discernment into Your Program


- You should have your most experienced and skilled personnel reviewing closures and initiating site characterizations.
- As these very same people will want to work on the most complex sites, a problem arises.
- You may need to set up these evaluations as "special" group projects.
- Skill is needed early because the dollars are lost and saved early in the process.

A good beginning predicts a good end.


The Analogy of the Water Tower: Find the Mass(es)

- Find the mass(es) of contamination!
- Most is associated with soil and aquifer materials.

Address Mass to Prevent Sustained Exposure

Completed exposure pathway, **sustained** exposure, at a sufficient concentration = Risk Probability.

"Risk-Informed" extends risk-based decisions

- Risk-informed focuses on contamination mass & the stratigraphy that retains mass.
 - *It avoids chasing dissolved phase plumes in favor of early action at the source.
 - *The objective is to reduce the possibility of **sustaining** exposures!
 - *Better characterization moves one away from baseline risk assumptions.
- Risk-informed prioritizes expenditures that prevent sustained exposure.
- Risk-informed considers
 - *Legislative action to "end the bleeding" sunset the program.
 - *What condition do you want the sites to be in when you are forced to walk away?
- "Risk-informed" included the opportunity costs across the portfolio.

Lessons and Approaches

- Spend money early in the characterization process Basic Lesson!
 - As directed by the most competent personnel.
 - Even at the risk of spending more on that site than the data ultimately supports, because
 - You can't see the future for a site, but you can see the future of your portfolio if you don't!
- Focus on the mass(es) of contamination not "the extent of plumes"
 - Use HRSC to find the mass(es) in three-dimensional space
 - When you don't know what to do, don't direct another round of sampling or install more monitoring wells based on intuition.
 - MW's are expensive over time!!
- Build into your organization space for acceptable failure Because no one can see inside the earth, you can't learn without experience, and tuition is not cheap.

