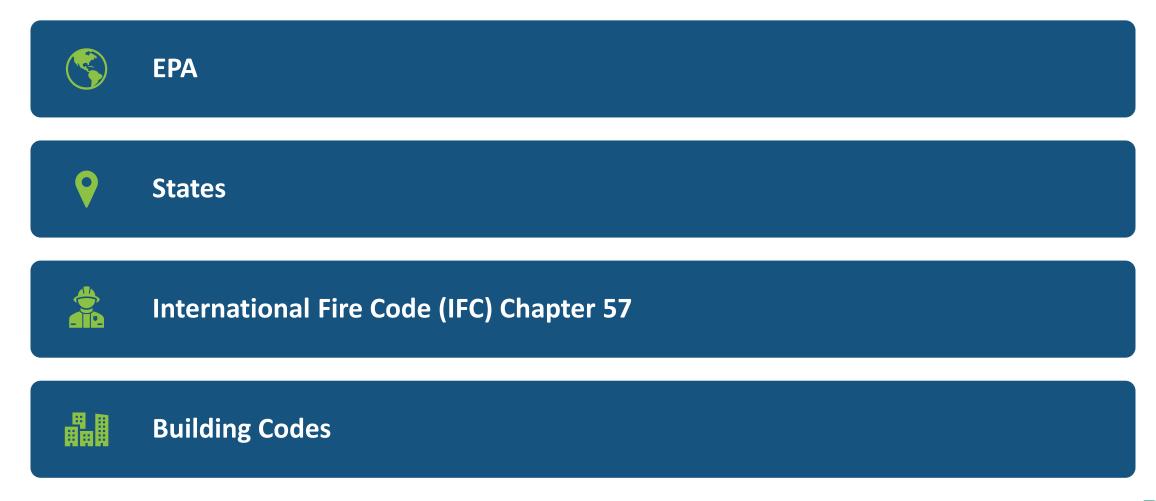



### Release Detection Problems for Emergency Generator Tanks

Alicia Meadows
UST Compliance Coordinator
September, 2025

#### Introduction




Who regulates Emergency Generator USTs?

What parts of the system are regulated as USTs?

**Compliance Complexities** 

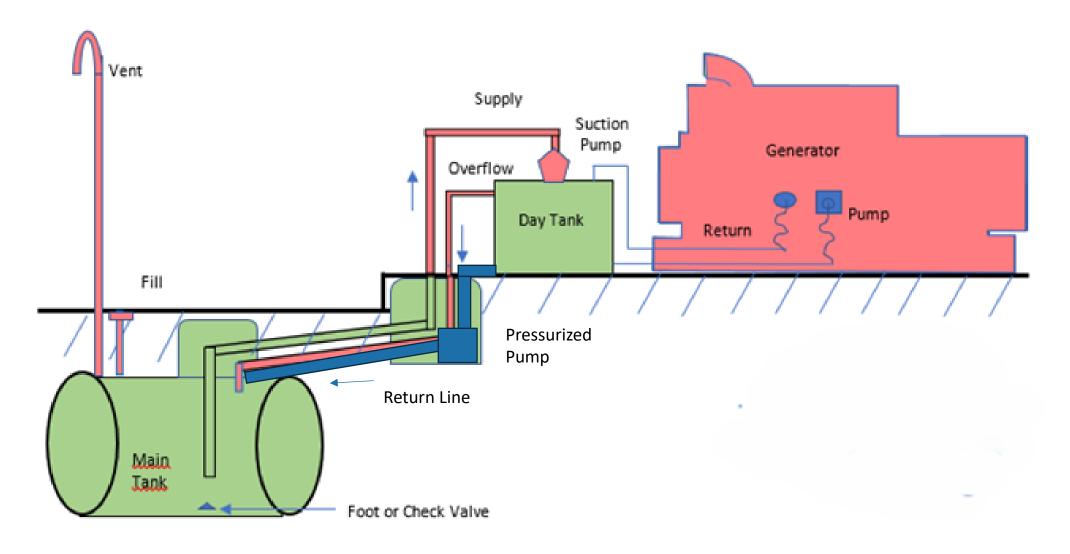
**Compliance Resolutions** 

# Who Regulates Emergency Generator Systems?

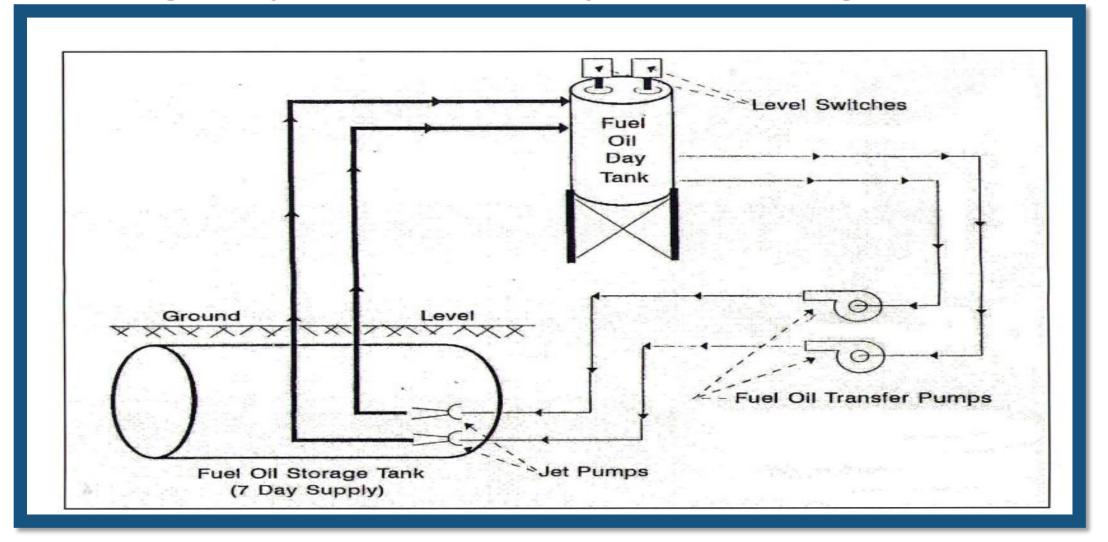


### **Industry Standards**

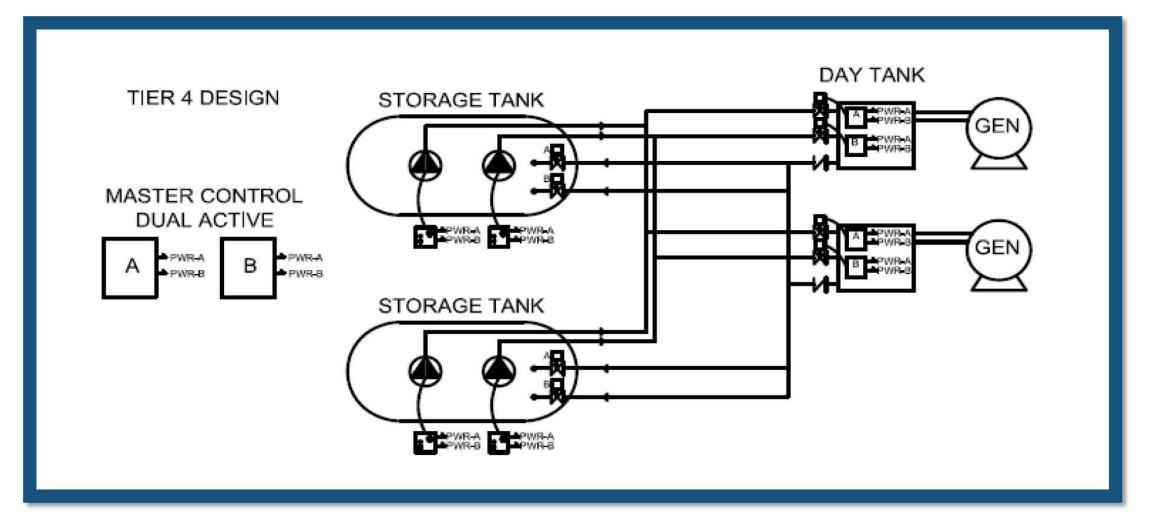
NFPA 30 "Flammable and Combustible Liquids" Chapters 21, 22,27, new chapter proposed


NFPA 31 "Standard for the Installation of Oil Burning Equipment"

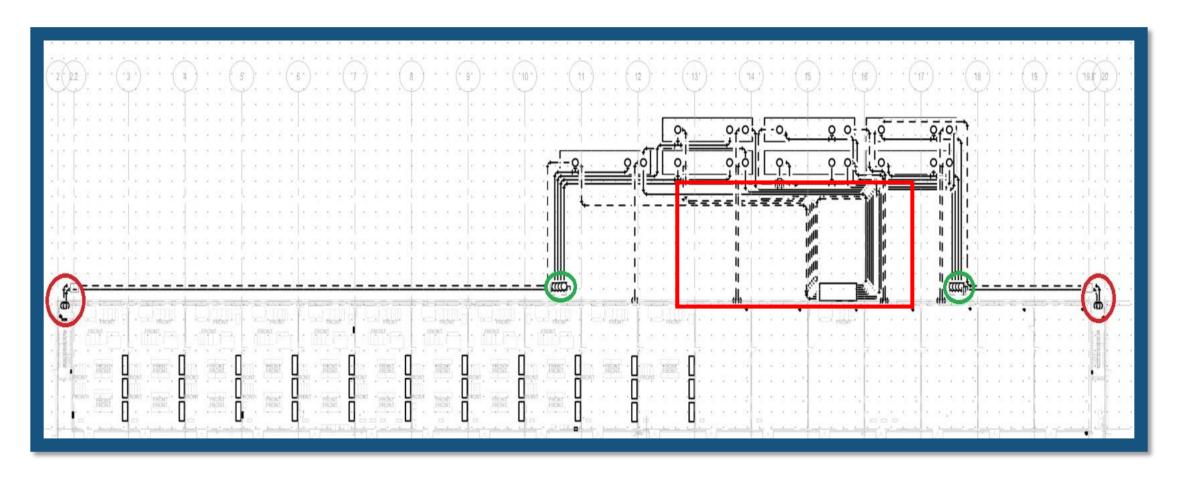
NFPA 110 "Standard for Emergency and Standby Power Systems"


PEI 1400 "Recommended Practices for the Design and Installation of Fueling Systems for Emergency Generators, Stationary Diesel Engines and Oil Burner Systems"

NFPA 37 "Standard for the Installation and Use of Stationary Combustion Engines"

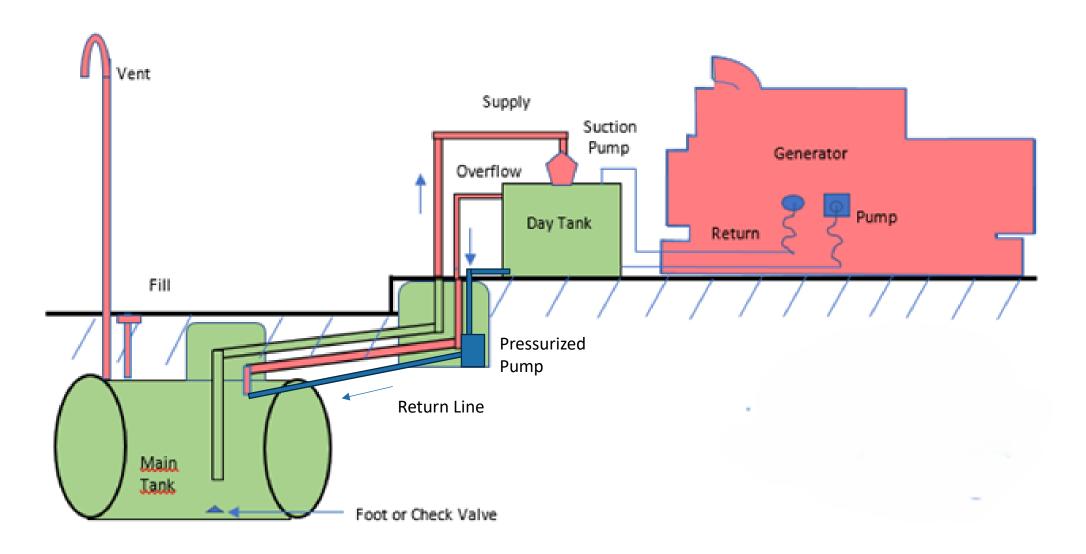















#### Return Line versus Overflow Line





# Release Detection Complexities

SIR can not be used

Large tanks (>50k gal.)

Line tightness testing

ALLDs – many issues

Long piping runs and large diameter piping—sump sensors may not meet the ALLD requirements





# Emergency Generator Tanks – Automatic Line Leak Detectors

3.0 gph at 10 psi within 1 hour requirement

- Mechanical
- Electronic
- Sump sensors
- AIM System



# Emergency Generator Tanks – Mechanical Line Leak Detectors

Do not function well with typical designs

- Restricts product flow to generator
- Not good in an emergency!



# Emergency Generator Tanks – Electronic Line Leak Detectors

- Stays in alarm mode
- Piping modifications may be needed

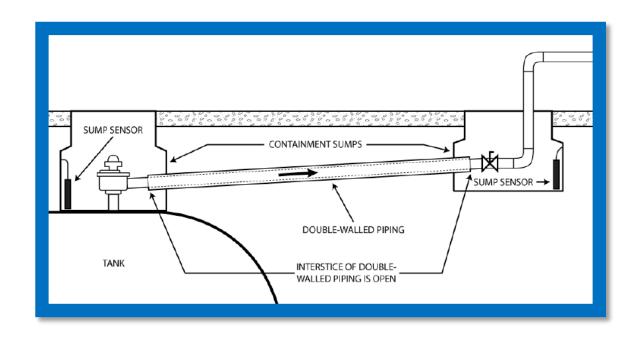
 Ensure that positive shutdown is not installed



# Emergency Generator Tanks – Line Tightness Testing

- Safe Suction no test
- Unsafe Suction every 3 years
- Supply and Return
   Lines Pressurized




### Emergency Generator Tanks – Sump Sensors

- Double walled pipe
- Containment sumps
- Sump sensors
- AIM system for lengthy piping runs



### Automated Interstitial Monitoring (AIM) System

- One solution for pressurized piping release detection
- Requires double-walled piping
- Meets both ALLD and one other method requirement
- Specific to emergency generator tanks





### AIM System – Key Components



Double-walled piping with full interstitial communication



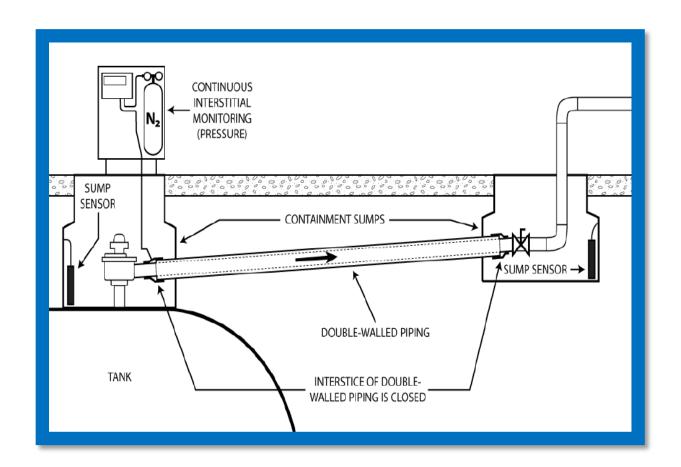
Monitoring points (pressure, vacuum, liquid reservoirs, or containment sumps)



Sensors



Automatic tank gauging system or console




### Category 1 Systems

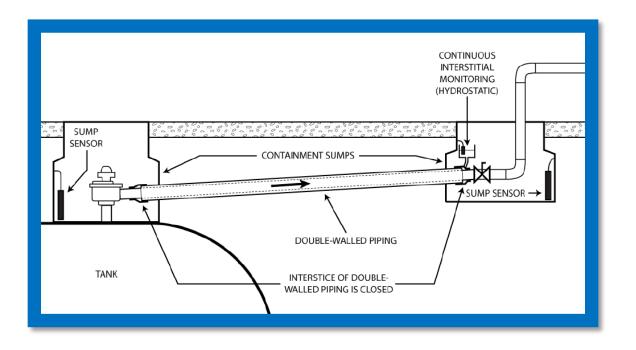
Pressure or vacuum

 Continuous monitoring of inner and outer wall

Meets 3/10/1 requirement

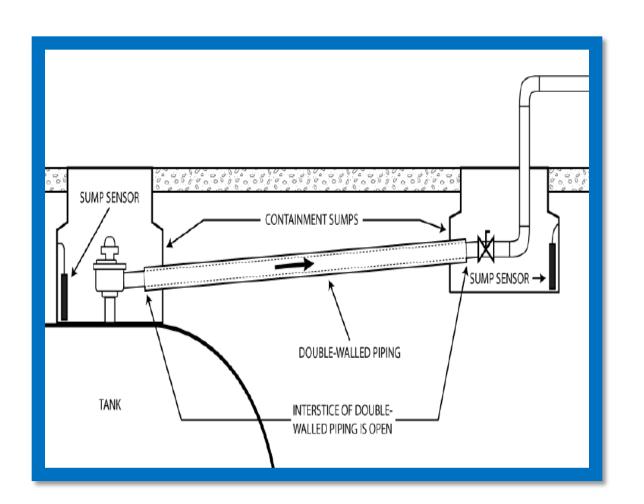





### Category 2 Systems

Liquid-filled System

Changes in liquid indicate release


Continuous Monitoring

Meets 3/10/1 requirement



### Category 3 Systems

- Dry interstice system
- Float based sensors in containment sumps
- MUST consider equipment limitations with this design
- Must have the piping interstice tested annually



# Category 3 System Calculations

|                                            | Table 3 (Part            | t 1) – Maximui          | m L | engths of                                                     | Double-W                                | alled Pip                               | ing for Ca                | ategory 3                 | AIM Sys                   | tems (Exa                 | mples of                   | Commer                     | cially Ava                | ilable Pij                 | pe)                     |                           |
|--------------------------------------------|--------------------------|-------------------------|-----|---------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|---------------------------|----------------------------|-------------------------|---------------------------|
| Leak Rate Equivalency to 3.0 gph at 10 psi |                          |                         |     | Example Commercially Available Pipe: Manufacturer and Product |                                         |                                         |                           |                           |                           |                           |                            |                            |                           |                            |                         |                           |
|                                            |                          |                         |     | Ameron                                                        |                                         |                                         |                           |                           |                           | APT                       |                            |                            |                           |                            |                         |                           |
|                                            |                          |                         |     | Dualoy<br>3000/L 3 in.<br>Over 2 in.                          | Dualoy<br>3000/L 4<br>in. Over 3<br>in. | Dualoy<br>3000/L 6<br>in. Over 4<br>in. | Dualoy<br>3000/L 2<br>in. | Dualoy<br>3000/L 3<br>in. | Dualoy<br>3000/L 4<br>in. | 0.5 in.<br>Double<br>Wall | 0.75 in.<br>Double<br>Wall | 1.00 in.<br>Double<br>Wall | 1.5 in.<br>Double<br>Wall | 1.75 in.<br>Double<br>Wall | 2 in.<br>Double<br>Wall | 2.5 in.<br>Double<br>Wall |
|                                            |                          |                         |     | Interstitial Volume (gal/ft)                                  |                                         |                                         |                           |                           |                           |                           |                            |                            |                           |                            |                         |                           |
| Line<br>Pressure                           | 3.0 gal/hr<br>Equivalent | Equivalent<br>Leak Rate |     | 0.2186                                                        | 0.2652                                  | 0.8398                                  | 0.0133                    | 0.0196                    | 0.0252                    | 0.0031                    | 0.0042                     | 0.0119                     | 0.0052                    | 0.0182                     | 0.0218                  | 0.0104                    |
| (psi)                                      | Vol<br>(mL/min)          | Vol (gph)               |     | Maximum Piping Length (ft) Between Sensors                    |                                         |                                         |                           |                           |                           |                           |                            |                            |                           |                            |                         |                           |
| 10                                         | 189                      | 3.0                     | Į   | 13.7                                                          | 11.3                                    | 3.6                                     | 225.3                     | 152.9                     | 118.9                     | 966.5                     | 713.3                      | 251.8                      | 576.2                     | 164.6                      | 137.4                   | 288.1                     |
| 15                                         | 232                      | 3.7                     |     | 16.8                                                          | 13.9                                    | 4.4                                     | 276.5                     | 187.6                     | 145.9                     | 1186.3                    | 875.6                      | 309.0                      | 707.2                     | 202.1                      | 168.7                   | 353.6                     |
| 18                                         | 254                      | 4.0                     |     | 18.4                                                          | 15.2                                    | 4.8                                     | 302.7                     | 205.4                     | 159.8                     | 1298.8                    | 958.7                      | 338.4                      | 774.3                     | 221.2                      | 184.7                   | 387.2                     |
| 19                                         | 261                      | 4.1                     |     | 18.9                                                          | 15.6                                    | 4.9                                     | 311.1                     | 211.1                     | 164.2                     | 1334.6                    | 985.1                      | 347.7                      | 795.7                     | 227.3                      | 189.8                   | 397.8                     |
| 20                                         | 268                      | 4.2                     |     | 19.4                                                          | 16.0                                    | 5.1                                     | 319.4                     | 216.8                     | 168.6                     | 1370.4                    | 1011.5                     | 357.0                      | 817.0                     | 233.4                      | 194.9                   | 408.5                     |
| 21                                         | 274                      | 4.3                     |     | 19.9                                                          | 16.4                                    | 5.2                                     | 326.6                     | 221.6                     | 172.4                     | 1401.1                    | 1034.2                     | 365.0                      | 835.3                     | 238.7                      | 199.2                   | 417.6                     |
| 22                                         | 281                      | 4.5                     |     | 20.4                                                          | 16.8                                    | 5.3                                     | 334.9                     | 227.3                     | 176.8                     | 1436.9                    | 1060.6                     | 374.3                      | 856.6                     | 244.7                      | 204.3                   | 428.3                     |
| 23                                         | 287                      | 4.5                     |     | 20.8                                                          | 17.2                                    | 5.4                                     | 342.1                     | 232.1                     | 180.5                     | 1467.6                    | 1083.2                     | 382.3                      | 874.9                     | 250.0                      | 208.7                   | 437.5                     |
| 24                                         | 293                      | 4.6                     |     | 21.2                                                          | 17.5                                    | 5.5                                     | 349.2                     | 237.0                     | 184.3                     | 1498.3                    | 1105.9                     | 390.3                      | 893.2                     | 255.2                      | 213.1                   | 446.6                     |
| 25                                         | 299                      | 4.7                     |     | 21.7                                                          | 17.9                                    | 5.6                                     | 356.4                     | 241.8                     | 188.1                     | 1529.0                    | 1128.5                     | 398.3                      | 911.5                     | 260.4                      | 217.4                   | 455.7                     |
| 26                                         | 305                      | 4.8                     |     | 22.1                                                          | 18.2                                    | 5.8                                     | 363.5                     | 246.7                     | 191.9                     | 1559.6                    | 1151.2                     | 406.3                      | 929.8                     | 265.7                      | 221.8                   | 464.9                     |
| 27                                         | 311                      | 4.9                     |     | 22.6                                                          | 18.6                                    | 5.9                                     | 370.7                     | 251.5                     | 195.6                     | 1590.3                    | 1173.8                     | 414.3                      | 948.1                     | 270.9                      | 226.1                   | 474.0                     |
| 28                                         | 317                      | 5.0                     |     | 23.0                                                          | 18.9                                    | 6.0                                     | 377.8                     | 256.4                     | 199.4                     | 1621.0                    | 1196.5                     | 422.3                      | 966.4                     | 276.1                      | 230.5                   | 483.2                     |
| 29                                         | 322                      | 5.1                     |     | 23.4                                                          | 19.2                                    | 6.1                                     | 383.8                     | 260.4                     | 202.6                     | 1646.6                    | 1215.3                     | 428.9                      | 981.6                     | 280.5                      | 234.1                   | 490.8                     |
| 30                                         | 328                      | 5.2                     |     | 23.8                                                          | 19.6                                    | 6.2                                     | 390.9                     | 265.3                     | 206.3                     | 1677.2                    | 1238.0                     | 436.9                      | 999.9                     | 285.7                      | 238.5                   | 499.9                     |



## Certification of Compliance Form

|                                                                              | Parille ID #            |                        |                          |                           |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------|---------------------------|--|--|--|--|--|--|
| Facility Name                                                                | Facility ID #           |                        |                          |                           |  |  |  |  |  |  |
| Physical Address                                                             |                         |                        |                          |                           |  |  |  |  |  |  |
| City                                                                         | County                  |                        | State                    |                           |  |  |  |  |  |  |
|                                                                              |                         |                        |                          |                           |  |  |  |  |  |  |
| UST Owner                                                                    |                         |                        |                          |                           |  |  |  |  |  |  |
| Installer or PE's Signature                                                  |                         |                        |                          |                           |  |  |  |  |  |  |
| Printed Name of Installer or PE                                              |                         |                        |                          |                           |  |  |  |  |  |  |
| Trined rune of thomas of the                                                 |                         |                        |                          |                           |  |  |  |  |  |  |
| Description                                                                  | Line # / Product        | Line # / Product       | Line # / Product         | Line # / Product          |  |  |  |  |  |  |
| Line Number / Product                                                        |                         |                        |                          |                           |  |  |  |  |  |  |
| Piping Manufacturer                                                          |                         |                        |                          |                           |  |  |  |  |  |  |
| Piping Model                                                                 |                         |                        |                          |                           |  |  |  |  |  |  |
| Pipe Diameter / Length of Pipe                                               | 1                       | 1                      | 1                        | 1                         |  |  |  |  |  |  |
| Approximate Pipe Interstice<br>Volume (Gallons)                              |                         |                        |                          |                           |  |  |  |  |  |  |
| Type of AIM System (Category #)                                              | □1 □2 □3                | □1 □2 □3               | □1 □2 □3                 | □ 1 □ 2 □ 3               |  |  |  |  |  |  |
|                                                                              | Category 1 or C         | ategory 2 Aim Sys      | tems                     |                           |  |  |  |  |  |  |
| Pressure (P) / Vacuum (V) / Liquid<br>Reservoir Manufacturer                 |                         |                        |                          |                           |  |  |  |  |  |  |
| P / V / Liquid Reservoir Model                                               |                         |                        |                          |                           |  |  |  |  |  |  |
| Note: Some category 1 and 2 system                                           | ns may also have conta  | inment sumns with lia  | uid-detecting sensors li | ike those used in         |  |  |  |  |  |  |
| category 3 systems. These sumps ma                                           |                         |                        |                          |                           |  |  |  |  |  |  |
| needed to monitor single-walled pip                                          | ing components inside   | the sump. As a contair | ment sump used for in    | nterstitial monitoring of |  |  |  |  |  |  |
| piping, these sumps must be tested f                                         | or integrity once every | three years.           |                          |                           |  |  |  |  |  |  |
|                                                                              |                         |                        |                          |                           |  |  |  |  |  |  |
|                                                                              | and the second second   |                        |                          |                           |  |  |  |  |  |  |
| Note: Containment sump testing is a                                          |                         | inment is double-wall  | ed and uses periodic in  | nersutial monitoring      |  |  |  |  |  |  |
| Note: Containment sump testing is a<br>that monitors the integrity of both w |                         | inment is double-wall  | ed and uses periodic in  | nersutial monitoring      |  |  |  |  |  |  |
|                                                                              |                         | inment is double-walk  | ed and uses periodic in  | nersunal monitoring       |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-wall  | ed and uses periodic in  | nersulai montoring        |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-wall  | ed and uses periodic in  | nersulai montoring        |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-wall  | ed and uses periodic in  | nersuuai mointoring       |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-wall  | ed and uses periodic in  | nersutal momerning        |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai monnoring        |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai momoring         |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai momoring         |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai momoring         |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai momoring         |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai momoring         |  |  |  |  |  |  |
| that monitors the integrity of both w                                        |                         | inment is double-walk  | ed and uses periodic in  | nersuuai momoring         |  |  |  |  |  |  |



# Necessary Information for Compliance Determinations

- System Diagram
- Return line and/or Overflow lines
- Valve placement
- Photos
- Blueprints
- Information Request



### Recap

Who regulates Emergency Generator USTs?

What parts of the system are regulated as USTs?

**Compliance Complexities** 

**Compliance Resolutions** 

**Necessary Information** 



## Questions



