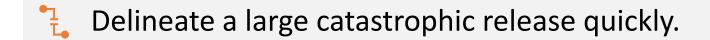
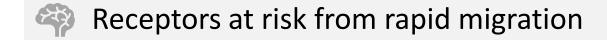


Advanced Site Characterization Tools and High-Resolution Site Characterization: Guidance, Applications, and Case Studies


Alex Wardle EPA OUST
National Tanks Conference, Spokane, Washington
September 2025


High Resolution Site Characterization

- Collects detailed geologic, hydrogeologic, and contaminant information at appropriate scale and density.
- Fills data gaps in the project Conceptual Site Model left from traditional characterization techniques.
- Uses surface and downhole geophysics, passive soil gas sampling, direct sensing probing techniques, and high-density soil and groundwater sampling in space and time.

• Recommend HRSC at LUST sites when:

- Complex geology
- Multiple traditional investigation rounds
- Unexplained LNAPL.
- € High cost cleanups.
 - Chemical Injections planned

HRSC provides holistic understanding

Qualitative, semiquantitative and visual.

Three-dimensional perspective connects the dots.

Immediate to rapid data.

Minimizes
mobilizations
required to get to
decision making
information.

Accessible information promotes stakeholder involvement.

Used effectively reduces overall project costs.

HRSC Tools

Direct sensing

Downhole geophysics

Surface geophysics

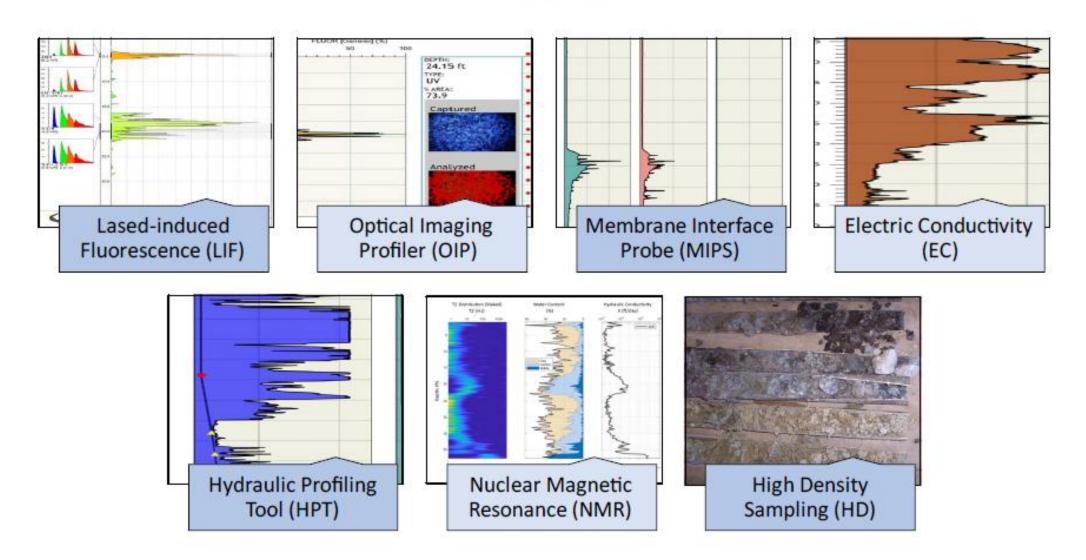
Remote sensing

High density sampling: soil, soil gas, and groundwater.

Temporal data collection

Guidance on Implementing Direct

Sensing High Resolution Site


Characterization at EPA UST Release

Sites in Indian Country

https://www.epa.gov/system/files/documents/2025-03/hrsc-indian-country-2025-03-04.pdf

Direct Sensing HRSC Tools

Design Investigation

Answer qualitative and semi quantitative questions:

- Where are hot spots needing detailed investigation?
- What geology does the LNAPL sit in?
- How is contamination distributed in high and low permeability zones?
- How does the geology connect the dots?
- Is contamination above or below groundwater?
- How should I design monitoring and remediation wells
- Where should I inject reagents?
- Do I have comingled plumes?

Target contamination hot spots and delineate with grids or transects.

Target points of exposure or monitoring wells of concern.

Example of suggested investigation grid

Table 2.1. Project Objectives, Data needs and appropriate HRSC Tools for Petroleum UST Release Sites.

	Data Need									
	Locate non-aqueous		Identify dissolved-	Identify geolog	Identify geologic variability,					
	phase li	Table 3.3. Key information and Key Data Outcomes from HRSC Tools.								
Project Objective Where is the subsurface source: LNAPL delineation?	I MIP	Sensor	Attribute	Detection	Reading interval	Key decisior informa				
		Electrical conductivity	Soil grain size, water quality	Layers as thin as 1-2 cm	1.5 cm interval	s Identify potentia layers and perme	_	Salinity a injected can affe		
How far have contaminants travelled: plume extent?	UVOST [©] MIP	Hydraulic profiling	Water injection	0.03 to 25	1.5 cm interval	s Estimates hydrau		Unable t		
LNAPL residual, mobile or migrating.	UVOST [©] HD NMR m	HD Table 3.0. Project Data Needs, Data from Tik3c, and Confirmatory Results.								
	LNAPL I	Nuclear								

magnetic resonance

Example Tables

	TRSC Data			Confirmatory Results		
Data Needs	Chemistry	Geology	Soil Results mg/kg	Groundwater		
Where is the secondary source in the subsurface?	UVOST*>2% and a wave form consistent with petroleum. MIP-FID>10 ⁷ µv, OIP fluorescence	EC and HPT data can help delineate where contamination might be expected based on stratigraphic predictions.	>100	>15 mg/l TPH or measured LNAPL		
Is LNAPL residual, mobile or migrating?	UVOST*>2% and a wave form consistent with petroleum. MIP-FID>10 ⁷ µv, OIP florescence Discrete soil samples.	Does EC or HPT data show potential pathways for LNAPL movement? Use EC and HPT data combined with UVOST/OIP to design confirmatory wells.	NA	Measurable LNAPL in confirmatory wells, Collect Transmissivity data, e.g., is T>0.1 ft²/day?		
Is there a PVI risk based on EPA screening criteria?	UVOST® petroleum %RE>2%, MIP- FID>10 ⁷ μν, OIP fluorescence within 15 ft of structure Soil vapor samples	Does EC or HPT data show a barrier to vapor movement? HPT dissipation test groundwater elevation	>100	>15 mg/l TPH or LNAPL. Groundwater elevation in wells: use HRSC data to confirm elevation is confined or unconfined.		
How far have	FID and PID data from MIP	EC and HPT data showing pathways.	NA	Longitudinal transect of		

Caution

Salinity and other ionic fluids (e.g.

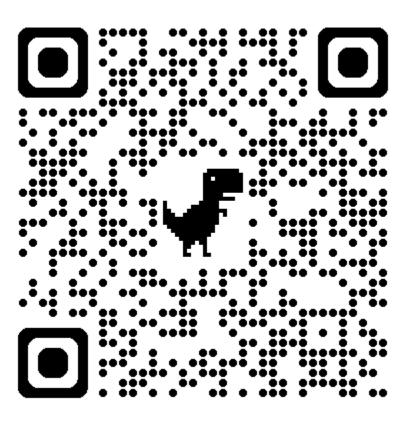
can affect measurements.

injected bioremediation chemicals)

Unable to quantify low (clays) or very

Confirmatory Pacults

HRSC Case Studies



Three case studies describe:

- Objectives.
- Scope.
- Tools used.
- Decisions made.
- Cost.
- Stakeholder engagement.

Advanced Site Characterization Tools – ITRC Update June 2025 to December 2026

ITRC ASCT Update Wish List

Update tools.

Additional Remote Sensing guidance.

Use of time lapse geophysics data.

High-density temporal data, including groundwater elevations, flow, and groundwater chemistry.

Holistic design of HRSC investigations at small scale sites, including LUSTs and dry cleaners.

Case Study!

Contact Info for EPA LUST HRSC: Alex Wardle Wardle.Alexander@epa.gov

Tom Schruben
Schruben.Thomas@epa.gov