

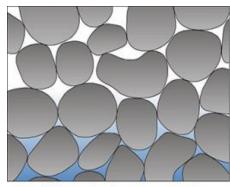
HIGH RESOLUTION SITE CHARACTERIZATION AND BIOREMEDIATION IN FRACTURED ROCK

Nathan Thacker Senior Geologist AST Environmental, Inc. Derek Pizarro Senior Product Manager AST Environmental, Inc.

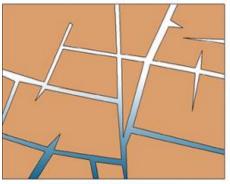
TRAP & TREAT® REMEDIATION PROCESS (THE APPROACH)

CSM Review/ Preliminary Design

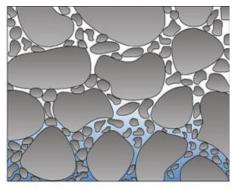
RDC Characterization Investigation

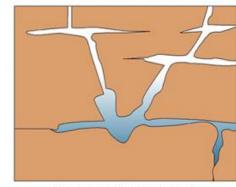

Design

Implementation


Performance Monitoring

WHAT IS A FRACTURE? WHAT IS A FEATURE?


- When associated to caliper logs...
 - Bedding plane separation
 - Joint/Fault
 - Lithologic contact
 - Hydraulic Zones (using our tools)
 - Producing
 - Receiving
 - Erosional Plane
 - Enlargement
 - Drilling-induced feature?
 - Total Porosity vs. Effective Porosity


Well-sorted sedimentary material (Alluvium of the South Platte River)

Fractured crystalline rocks (Pikes Peak Granite)

Poorly sorted sedimentary material (Dawson, Denver, Arapahoe aquifers)

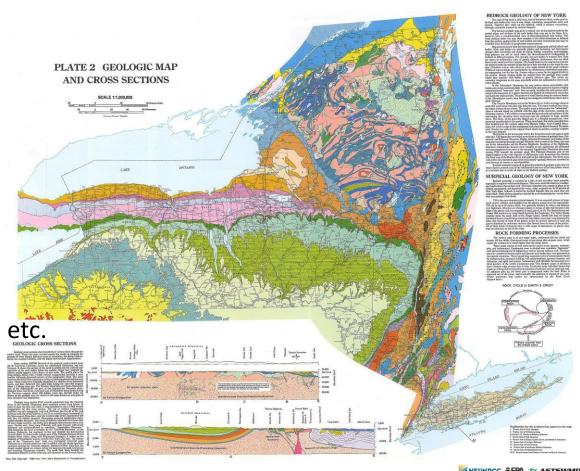
Soluble rock-forming material (Leadville Limestone)

REMEDIAL DESIGN CHARACTERIZATION (RDC)

Surface Geophysics

- 2D Electrical Resistivity
- Seismic

Characterization → Injection Wells

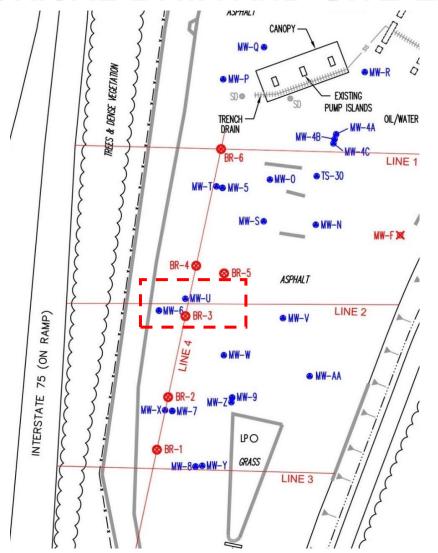

- Open Borehole with surface casing
- Rock Cores logging and sampling of matrix

Borehole Geophysics

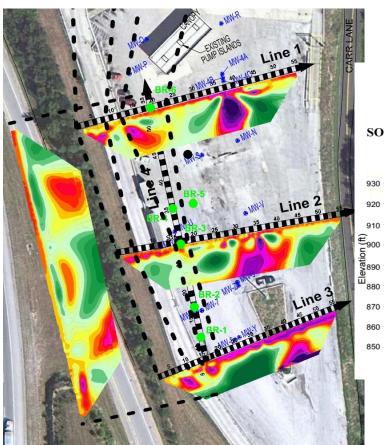
Caliper, Acoustic Televiewer, Downhole Camera, etc.

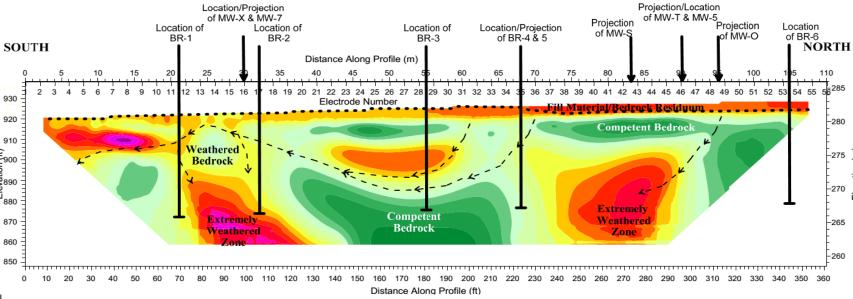
Groundwater Characterization

- Pumping Tests
- Discrete Interval Analytical Sampling
- Response Data Transducers



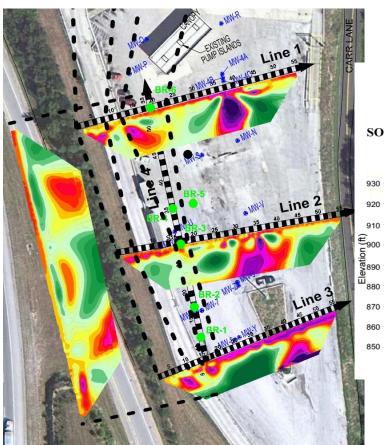
SURFACE GEOPHYSICS

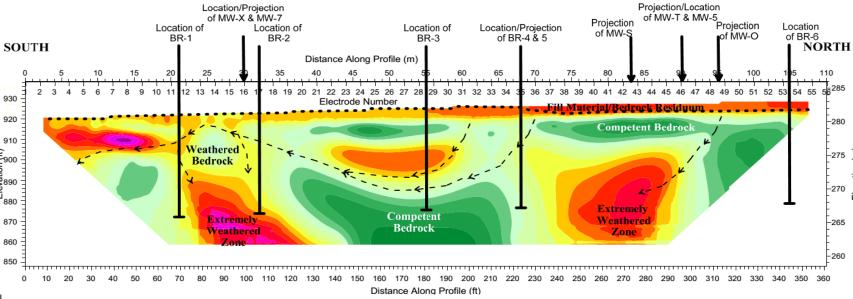

HISTORICAL DATA AND SITE LAYOUT

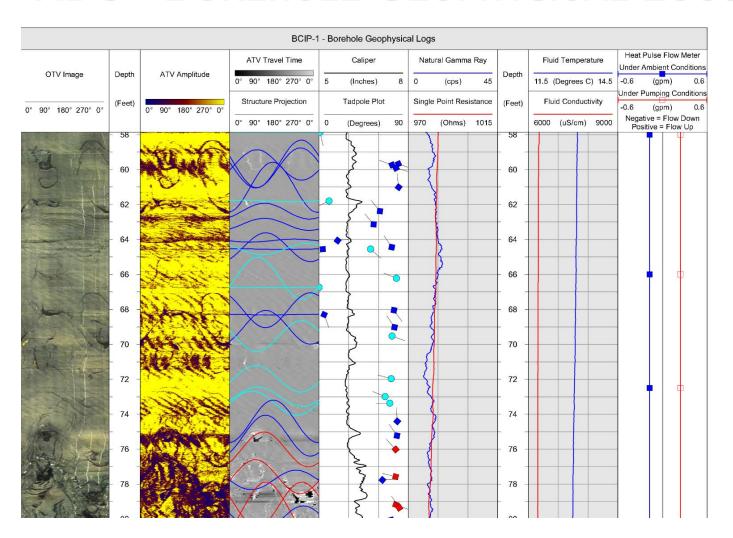


- Shallow bedrock
- Benzene higher in shallow wells near source
- Highest concentration
 MW-U deep screen
- Shallow wells are most impacted further down gradient – MW-7, MW-8

RDC - 2-D ELECTRICAL RESISTIVITY






RDC - 2-D ELECTRICAL RESISTIVITY

RDC - BOREHOLE GEOPHYSICAL LOGS

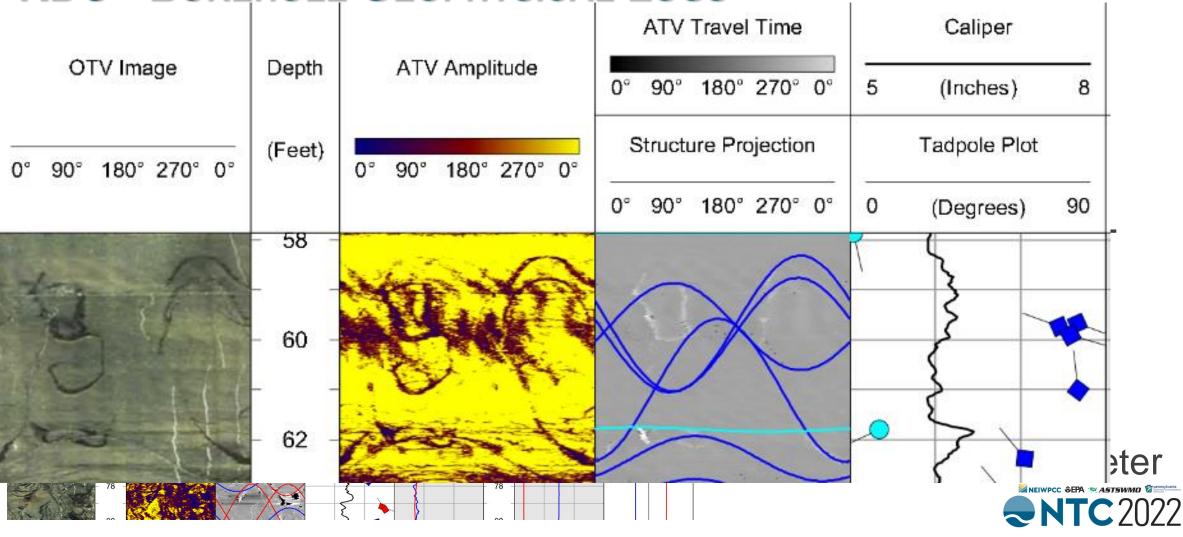
Standard Details

- 3 arm caliper*
- Natural Gamma
- Resistivity
- Fluid Temperature + Conductivity

Additional Details

- OTV and ATV*
- Heat Pulse Flow Meter

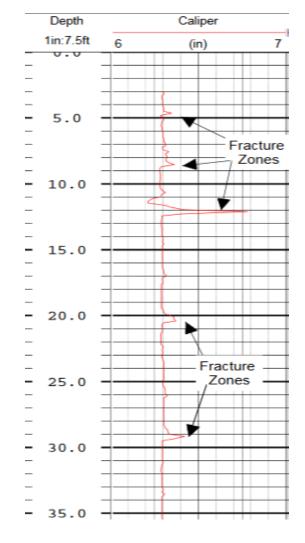
BOREHOLE CAMERA



BOREHOLE CAMERA

RDC - BOREHOLE GEOPHYSICAL LOGS

RDC - DOWNHOLE CAMERA


WHAT IS A STRADDLE PACKER?

- Expandable bladder/plug
- Uniform, even inflation
- Open-air high-pressure inflation w/o rupture
- Isolates borehole sections
- Rated for high pressures (ensure seal)
- Sliding element section with O-ring seal
- Long sealing section

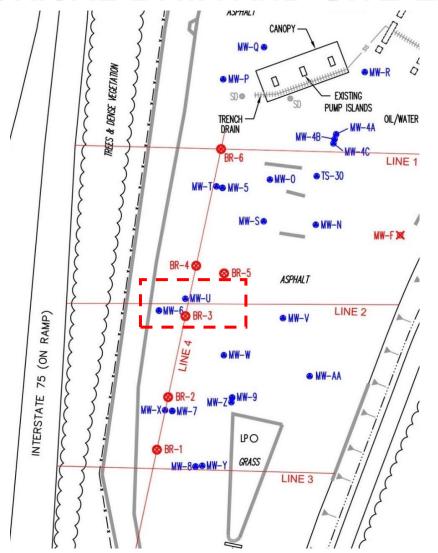
RDC – GW CHARACTERIZATION

Aquifer Testing

- Pumping Tests
- Discrete Interval Analytical Sampling
- Response Data Transducers
- Conventional packer strings make it very difficult to isolate individual features
- Custom Straddle Packer String
 - Pressure transducers
 - Integrated pump
 - Discrete Sampling or injection

ROCK CORES

- Structure, texture, and variation in lithology visible in log perspective
- Another level of data to use when updating the CSM
 - Look, touch, hold, etc. what you see in 2D wireline logs or downhole camera display
 - Sample Rock Matrix

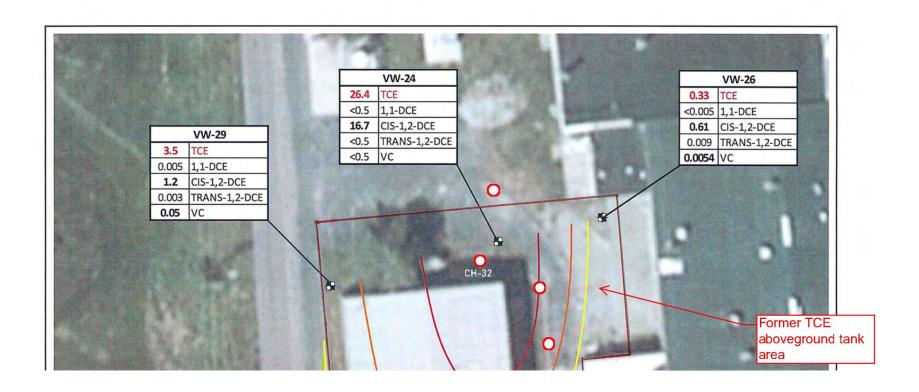

 NEIWPCC & EPA STEWMO PORTON

ROCK MATRIX SAMPLING

HISTORICAL DATA AND SITE LAYOUT

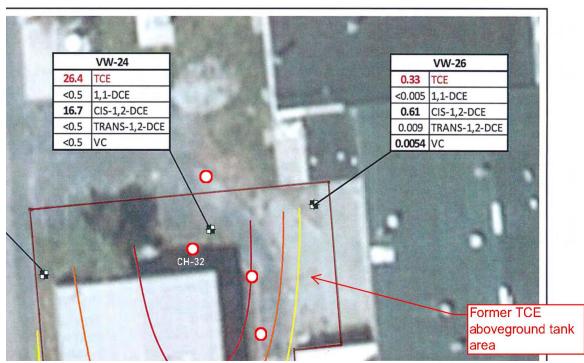
- Shallow bedrock
- Benzene higher in shallow wells near source
- Highest concentration
 MW-U deep screen
- Shallow wells are most impacted further down gradient – MW-7, MW-8

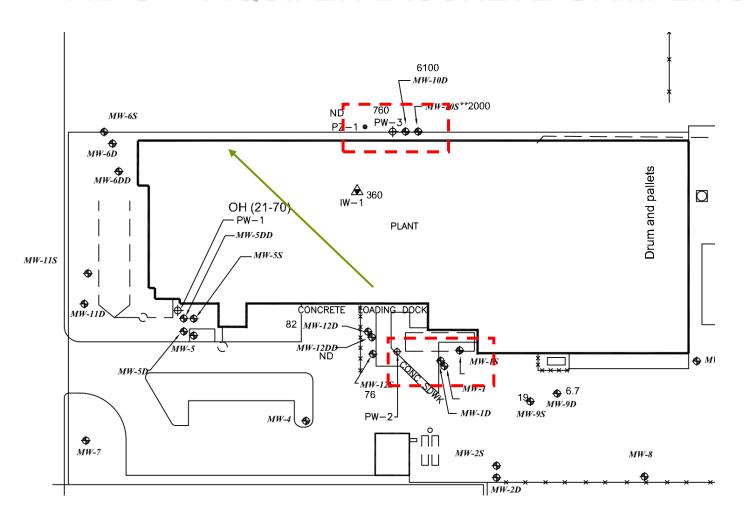
ROCK MATRIX SAMPLES VS GROUNDWATER RESULTS


Sample ID. No.	MW-U	MW-U	MW-U	MW-U
Date Sampled	5/2/2013	5/2/2013	5/2/2013	5/2/2013
Sample Depth	12-12.75'	12-12.75'	19.75-20'	22-22.25'
		(2nd Sample)		
Units	ug/kg	ug/kg	ug/kg	ug/kg
MTBE	374 (4)	336 (5)	ND (6)	ND (5)
Benzene	1420 (4)	1390 (5)	ND (6)	16.5 (5)
Toluene	2090 (4)	2580 (5)	ND (6)	7.67 (5)
Ethylbenzene	417 (4)	385 (5)	ND (6)	ND (5)
m/p-Xylenes	1330 (4)	1350 (5)	21.9 (6)	7.46 (5)
o-Xylenes	641 (4)	579 (5)	9.57 (6)	ND (5)
1,2,4-Trimethylbenzene	114 (4)	432 (5)	15.2 (6)	5.04 (5)
Naphthalene	37.7 (4)	118 (5)	ND (6)	ND (5)
TVPH (ppm)	50.8 (2)	46.7 (2.5)	260 (3)	15.8 (2.5)

The highest benzene concentration from adjacent discrete gw sampling was 474 ug/L

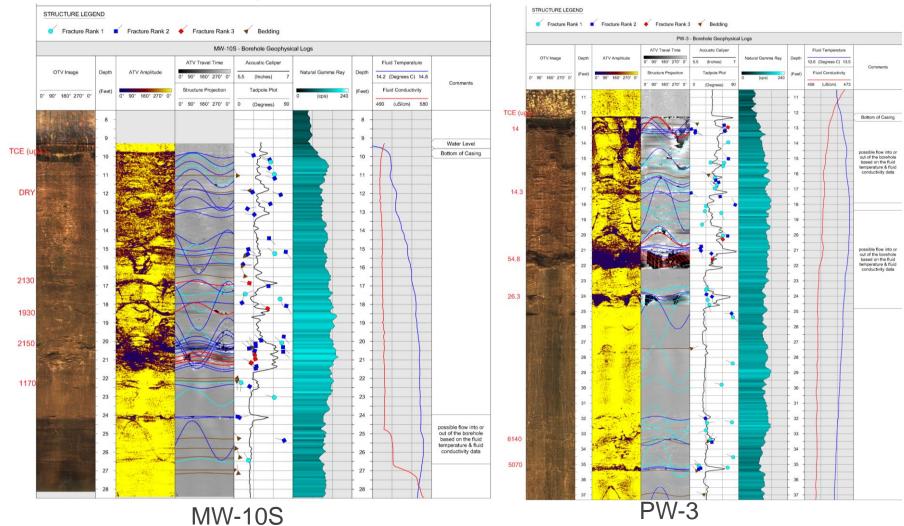
			33.8	Benzene
	9/17/12	20.86		6.4
	6/29/12	14.27		9.3
	9/15/11	12.50		3.4
	2/18/11	12.35		5.9
	6/30/10	21.0		6.3
	3/19/10	12.24		5.7
	7/7/09	12.32		10
	2/12/09	12.92		1.8
	5/22/08	12.19		2.2
MW-U	11/19/03	12.31		3.2
	12/3/02	12.50		0.5
	9/11/02	11.17		0.021
	6/19/02	8.67		0.66
	3/18/02	2.08		0.052
	11/13/01	19.30		0.00066
	8/14/01	10.58		2.8
	1/3/01	15.00		0.68
	7/7/99	11.05		0.64
	3/2/98	10.40		4.6
	12/17/97	33.81		0.6

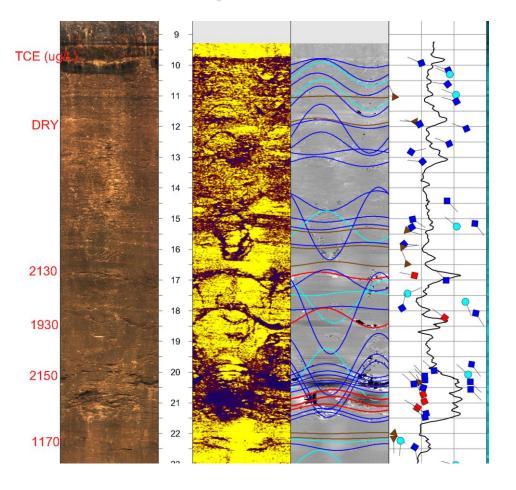

RDC - ROCK MATRIX VS GROUNDWATER CONCENTRATIONS

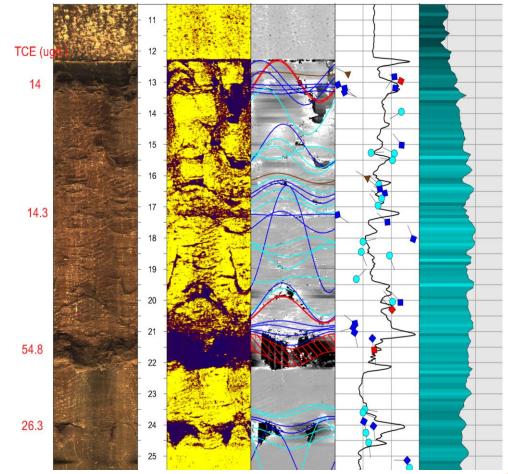


RDC - ROCK MATRIX SAMPLE

CH-32 Discrete Intervals		CH-32	VW-24	
Sample Depth	TCE (ug/L)	TCE (ug/Kg)	TCE (ug/L) Water @ 34.80'	TCE (ug/L) Water @ 18.70'
7	Dry	774		
10.6	Dry	4780		
15	Dry	197		
20.6	Dry	25,400		
22.7	Dry	336		
27.4	Dry	78.0	204	26,400






- Multiple potassium permanganate injections completed at PW-1 and PW-2
- Induced flow from PW-3
- No long-term reductions in TCE concentrations

RW-4D Sample Intervals			
Volume Pumped (g)			
5			
10 (LNAPL)			
10 (LNAPL)			
5			
5			
10			
10			
10			

Sample event agenda twin-track tables

Track 1: Title

7:30AM – 8:30AM	Networking Breakfast Room 000 Hosted by Host Name
9:00AM – 10:30AM	SESSION 1: TITLE HERE Room 000 Presenter Name
10:45AM – 11:45AM	SESSION 2: TITLE HERE Room 000 Presenter Name
12:00PM – 1:15PM	Lunch and Learn: Topic Title Room 000 Hosted by Host Name
1:30PM – 3:30PM	SESSION 3: TITLE HERE Room 000 Presenter Name

Track 2: Title

7:30AM – 8:30AM	Networking Breakfast Room 000 Hosted by Host Name
9:00AM – 10:30AM	SESSION 1: TITLE HERE Room 000 Presenter Name
10:45AM – 11:45AM	SESSION 2: TITLE HERE Room 000 Presenter Name
12:00PM – 1:15PM	Lunch and Learn: Topic Title Room 000 Hosted by Host Name
1:30PM – 3:30PM	SESSION 3: TITLE HERE Room 000 Presenter Name

THANK YOU!

Nathan Thacker

nthacker@astenv.com

RPI Booth #212