Sulfate Delivery Methods for Enhancing Biodegradation of Petroleum Hydrocarbons Kammy Sra, Ravi Kolhatkar (Chevron Technical Center, a Chevron U.S.A. Inc. division, Houston, TX)

Daniel Segal (Chevron Technical Center, a Chevron U.S.A. Inc. division, San Ramon, CA) John Wilson (Scissortail Environmental Solutions, LLC Inc., Ada, OK)

- Active electron acceptor in degradation of petroleum hydrocarbons (PHCs) \rightarrow sites are generally anaerobic and depleted in sulfate,
- or nitrate) and comparable degradation efficiency,
- oxygen or nitrate),

• Significant ²H and ¹³C enrichment in remaining toluene (at B depth interval) indicating removal of inhibitory competition to eventual degradation of benzene

Summary of Electron Acceptor Advantages and Concerns (adapted from Cunningham et al. 2001)

n of er	Reaction	Reactant	Product	Maximum Concentration in Water (mg/L)	Benzene Consumed (mg/L)	Notes / Likely Issues
ver	Aerobic	0 ₂		9	3.0	 Limited solubility Numerous other oxygen sinks Potential aquifer clogging Biofouling near injection point
EX , e)	Nitrate reduction	NO ₃ -		45	9.5	 Drinking water concern Primary MCL 10 mg/L NO₃⁻-N (or 45 mg/L NO₃⁻) Expensive
	Iron (III) reduction		Fe ²⁺	≈50	1.2	 Oxidation of Fe⁻² leads to aquifer clogging
	Sulfate reduction	SO42-		250	55	 Hydrogen sulfide; rarely an issue due to precipitati with iron in soil Secondary MCL for sulfate – 250 mg/L Much cheaper than nitrate
	Methanogenesis		CH ₄	≈ 16	21	 At concentrations ≈ 16 mg/L, methane leaves the groundwater as bubbles. Hydrocarbon degradation may be greater than estimated.

PFBs were installed to depth of around 60' below ground surface around monitoring wells U-4, U-18 and U-1.

Sulfate breakthrough occurred with

5. Conclusions

- Sulfate is a commonly depleted electron acceptor at PHC impacted sites and delivery of sulfate in a sustained manner results in enhanced degradation rates of PHCs
- Addition of sulfate induced sulfate reducing conditions which resulted in
- Sustained sulfate breakthrough at monitoring points,
- Enriched ${}^{34}S-SO_4{}^{2-}$ indicating sulfate reduction
- Depleted ¹³C-DIC indicating PHC mineralization
- Enhanced degradation of BTEX in groundwater
- Enriched ¹³C and ²H in benzene and toluene
- Enhanced methanogenesis after sulfate was consumed suggesting syntrophic benefit from sulfate addition and enrichment of the microbial ecosystem
- Gypsum in excavation backfill and permeable filled trenches are other viable approaches for sulfate delivery
- environmental sites

Scissortail Environmental Solutions, LLC

References:

J.A. Cunningham et al., 2001/ Environmental Science & technology 35, no. 8: 1663-1670

Buscheck et al., 2019/Ground Water Monitoring & Remediation 39, no. 3, 48-60 Open Access: https://doi.org/10.1111/gwmr.12346

R. Kolhatkar and M. Schnobrich, 2017/Ground Water Monitoring & Remediation 37, no. 2, 43-57 Open Access: https://doi.org/10.1111/gwmr.12209

K.S. Sra et al., 2022/Ground Water Monitoring & Remediation, DOI: 10.1111/gwmr.12547 Open Access: https://doi.org/10.1111/gwmr.12547

eaves the legradation

Results: PFBs(Buscheck et al., 2019)

- Sulfate breakthrough occurred with sulfate reaching up to 100 mg/L
- Benzene and TEX attenuation was enhanced after

Overall, sulfate addition at sites depleted in the electron acceptor can result in enhanced biodegradation of the PHC source zone and result in expedited timeframes for cleanup of