USING GOTOWEBINAR

Two Options for Audio:

 Use your computer's speakers
Call in by phone using the call-in number and access code in the Audio section of the control box.

All participants are **muted** by default.

Questions: Use the "send question" option in the chat panel to ask questions throughout the presentation.

Ask for help! Use the questions box to let us know if you have technical difficulties. You can also raise your hand for help.

NTC WEBINAR SERIES:

LUST CORRECTIVE ACTION: RESOURCES, CASE STUDY, AND A DISCUSSION ON REMEDIAL DESIGN CHARACTERIZATION AND IN-SITU REMEDIAL METHODS

10/14/2020

NE

PCC

TANKS PROGRAM

Webinar Series

•L.U.S.T.Line

National Tanks Conference & Expo

NTC WEBINAR SERIES:

LUST CORRECTIVE ACTION: RESOURCES, CASE STUDY, AND A DISCUSSION ON REMEDIAL DESIGN CHARACTERIZATION AND IN-SITU REMEDIAL METHODS

10/14/2020

NE

PCC

TODAY'S SPEAKERS

Kristopher McCandless, CPG Environmental Geologist | VA DEQ

Vicki Voisard, PG Geologist Registered | KY DEP

Bill Brab, CPG, PG

Senior Remediation Geologist | AST Environmental, Inc.

What is ITRC?

ITRC is a state-led coalition working to advance the use of innovative environmental technologies and approaches to translate good science into better decisionmaking.

2 **Unique Network** 10% 37% 907 **Members** 2.. 2% 5%

State/City/Local
Government
Federal Government

*** INTERSTATE**

Private Sector

Academia

44%

ITRC Accomplishments	* INTERSTATE *
<i>Educates</i> state regulators on the use of innovative technologies	
Promotes the use of innovative technologies Unites state approaches to complex topics	
Inspires collaboration over adversarial relationships	

ITRC Internet Based Documents and Training Used for LUST Sites

- Characterization and Remediation of Fractured Rock (Dec. 2017)
 - https://fracturedrx-1.itrcweb.org/
 - Internet-Based Training offered 3 times in 2020
- Implementing Advanced Site Characterization Tools (Dec. 2019)
 - https://asct-1.itrcweb.org/

5

- Videos built into web document
- Optimizing Injection Strategies & In situ Remediation Performance (Feb2020)
 - https://ois-isrp-1.itrcweb.org
 - Internet-Based Training offered 3 times in 2020
- TPH Risk Evaluation at Petroleum-Contaminated Sites (Nov. 2018)
 - <u>https://tphrisk-1.itrcweb.org/</u>
 - Internet-Based Training offered 3 times in 2020

EXPLORE THIS LINK FOR MORE ITRC DOCUMENTS: https://www.itrcweb.org/Guidance

ITRC's Characterization and Remediation of Fractured Rock

7

Free Online Access at: <u>https://fracturedrx-</u> <u>1.itrcweb.org/</u>

Key to your success - a team with broad expertise: hydrogeology, structural geology, geophysics, geochemistry, and engineering

► INTERSTATE Hydrogeologic Characteristics affecting **GW Flow through Bedrock Fractures** Infilling Aperture Orientation **Planarity or** waviness Length MENTAL RESEARCH Photographs by K.K.McCandless ECOS

Tools Table can be downloaded on the opening page of ITRC FracRx-1

⁰ ITRC's Advanced Site Characterization Tools

✗ INTERSTATE

Free Online Access at: <u>https://asct-1.itrcweb.org/</u>

Data Needed Subsurface/Surface Saology Consolidated /Behnich Data Collection Data Quality All All	ITRC ASCT Selection Tool SEARCH														
	Data Needed			Subsurface/Surface Data Quality			Data Collection Additional Info				al Info				
Tool	Geology	Hy droge ology	Chemistry	Topography	Consolidated /Bedrock	Unconsolidated	Surface	Quantitative	Semi-Quantitative	Qualitative	Invasive	Non-Invasive	Summary Table	Checklist	Case Study
Direct Sensing													DS_ST	DS_CL	
Membrane Interface Probe (MIP)			X		X	X			X		X		/	/	9.1 (9.2)
Optical Image Profiler (OIP-UV, OIP-G)			X		X	X			X		X	1.00	1	-	9.3
Laser Induced Fluoresence (LIF)			X		X	X			X		X		-	-	9.4 (9.5/9.6)
Cone Penetrometer Testing (CPT)	X	X		(X	X		X			X		1	-	9.7
Hydraulic Profiling (Waterloo ^{we} and HPT)	X	X			X	X	A	X	X	X	X	1	-		9.8
Electrical Conductivity (EC)	X		X	-	X	X			X	X	X	-			
Flexible Underground Technology (FLUTe)		X	X		X			X	X	X	X		/		
Borehole Geophysics													BG_ST	BG_CL	
Fluid Temperature			X					X	1.000		X		1	/	9.9
Fluid Resisitivity			X		X				X		X			<	9.9
Mechanical Caliper	X		_		X				X		X				9.9
Optical Televiewer (OTV)	X	X			X	_	_		X	-	X	-		<	9.9
Acoustic Televiewer (ATV)	X	X			X		_		X	_	X	-	<		9.9
Natural Gamma	X	~	-		X	_ X			X		X	-	>	<	9.9
Installer Flow Meter		÷	<u> </u>		-				÷	-	÷	-	<	>	9.9
Electrical Residuate	•	^	×		×				Ŷ		Ŷ		>	<	9.11
Nuclear Magnetic Resonance (NMR)		x	x		x	×		X	^	-	Ŷ		<	>	9.9
Borehole Video	x				X	X		~		X	x			\leq	9.9
Surface Geophysics													SG ST	SG CI	
Electrical Pagintinity Inacing /ERI\ (Tomography (ERT))	×	× ×	×	-	v	×		-	X	V V		×	00_01	00_01	9 13 (9 10/9 15)
Ground Penetrating Radar (GPR)	x	Ŷ	~		x	x				x		Ŷ	\leq	>	9.12 (9.11/9.13)
Multichannel Analysis of Surface Waves (MASW)	X				X	X			X	X		x	>	\leq	9.15 (9.14)
Seismic Reflection	X				X	X			x	X		x	\leq	>	
Seismic Refraction	X				X	X			x	X		X	>		9.14
Frequency Domain Electromagnetics (FDEM)	X	X			X	x			X	X		X		>	9.11
Time Domain Electromagnetics (TDEM)	X	X	X		х	X		X	X	X		x	>		9.16
Remote Sensing													RS ST	RS CL	
Visual Spectrum Camera	[1		X	-		X	X		X		x	/	~	9,17 (9,18/9,19)
Multispectral Camera			X				X	X		X		x	\leq	>	9.18 (9.17)
Hyperspectral Camera			X				X	X		X		X	>		
Thermal/Long-Wave Infra-Red Camera	X	X	X				X	X		X		X		>	9.18 (9.17)
LIDAR				X			X	X	1		_	X	>	1	
Water Sampling			X				X	X	1.00		X		/	-	
Air Sampling			×				X	X			X		-	1	9,19

X¹ - these methods are typically direct-push, so may only be used in softer consolidated materials or in pre-drilled boreholes in bedrock.

Selection Tool: Filtered Results Table

Type: Geology; Subsurface: Consolidated /Bedrock ; Quality: All; Data: Al						
Tool	Geology	Hydrogeology				
Direct Sensing						
Cone Penetrometer Testing (CPT)	X	х				
Hydraulic Profiling (WaterlooAPS and HPT)	×	X				
Electrical Conductivity (EC)	×					
Borehole Geophysics						
Mechanical Caliper	X					
Optical Televiewer (OTV)	X	X				
Acoustic Televiewer (ATV)	X	X				
Natural Gamma	X					
Barehole Video	X					
Surface Geophysics						
Electrical Resistivity Inacing (ERI) (Tomography (ERT))	X	X				
Ground Penetrating Radar (GPR)	х	x				
Multichannel Analysis of Surface Wayes (MASW)	X					
Seismic Reflection	X					
Seismic Refraction	X					
Frequency Domain Electromagnetics (FDEM)	X	X				
Time Domain Electromagnetics (TDEM)	х	X				

Appendix A. Tool Tables and Checklists

Title	Document File Name						
ASCT Selection Tool	ASCT Selection Tool						
Section 3 – ASCT Direct Sens	ing						
Tool Summary Table	ASCT Direct Sensing Tool Summary Table						
Checklists	ASCT Direct Sensing Checklists (.xlsx version)						
Section 4 – ASCT Borehole Ge	eophysics						
Tool Summary Table	ASCT Borehole Geophysics Tool Summary Table						
Checklists	ASCT Borehole Geophysics Checklists (.xlsx version)						
Section 5 – ASCT Surface Ge	ophysics						
Tool Summary Table ASCT Surface Geophysics Tool Summary Table							
Checklists	hecklists ASCT Surface Geophysics Checklists (.xlsx version)						
Section 6 – ASCT Remote Ser	nsing						
RPAS Summary Table	ASCT Remote Sensing RPAS Summary Table						
Checklists	ASCT Remote Sensing Checklists (.xlsx version)						

- Surface Geophysics is in Section 5.0; Subheadings for Each Tool:
 - Use
 - Data Collection Design
 - Data Processing and Data Visualization
 - Quality Control
 - Limitations
 - Cost
 - Cast Studies

5.3 Ground Penetrating Radar

ITRC ASCT-1 Figure 5-9

Optical TeleViewer (OTV)

Red Tadpoles: Open Fractures Blue Tadpoles: Bedding, Banding, Foliation

Strike & Dips fr tadpoles

Well ID	Depth	Dip Dir.	Dip	Type	Strike/Dip	Strike Azimuth (Right-hand-rule)		
	(feet)	(deg)	(deg)		(Quadrant)			
BR-6	12.82	111.28	54.9	Foliation	N21E/55SE	21.3		
8R-6	13.13	167.32	42.78	Foliation	N77E/43SE	77.3		
BR-6	18.38	46.13	50.68	Fracture	N44W/51NE	316.1		
BR-6	21.14	90.85	42.09	Foliation	N1E/42SE	0.8		
BR-6	23.39	141.75	51.9	Fracture	N52E/52SE	51.8		
8R-6	23.61	83.29	66.95	Fracture	N7W/67NE	353.3		
BR-6	28.12	305.36	70.52	Fracture	N35E/71NW	215.4		
8R-6	30.76	77.81	67.37	Fracture	N12W/67NE	347.8		
BR-6	31.1	120.57	41.31	Foliation	N31E/41SE	30.6		
BR-6	32.25	114.4	32.14	Fracture	N24E/32SE	24.4		
BR-6	33.43	135.6	38.33	Foliation	N46E/38SE	45.6		
BR-6	35.71	78.22	15.78	Foliation	N12W/16NE	348.2		
BR-6	37.77	196.65	69.82	Fracture	N73W/70SW	106.7		
BR-6	38.4	188.88	69.32	Foliation	N81W/69SW	98.9		
BR-6	39.14	205.15	65.29	Fracture	N65W/65SW	115.2		
BR-6	39.71	179.88	27.45	Fracture	N90E/27SE	89.9		
BR-6	41.04	126.63	49.38	Fracture	N37E/49SE	36.6		
BR-6	43.52	98.03	79.91	Fracture	N8E/80SE	8.0		
BR-6	43.74	91.95	64.09	Fracture	N2E/64SE	2.0		
8R-6	45.26	221.95	70.36	Fracture	N48W/70SW	132.0		
BR-6	45.62	116.97	52.29	Fracture	N27E/52SE	27.0		
8R-6	46.75	114.42	45.61	Foliation	N24E/46SE	24.4		
BR-6	48.49	83.34	34.94	Foliation	N7W/35NE	353.3		
BR-6	50.53	153.7	41.52	Foliation	N64E/42SE	63.7		
BR-6	51.29	347.04	47.5	Fracture	N77E/48NW	257.0		
BR-6	55.46	348.05	37.59	Fracture	N78E/38NW	258.1		
8R-6	56.93	155.76	55.18	Fracture	N66E/55SE	65.8		
BR-6	57.09	34.67	71.42	Fracture	N55W/71NE	304.7		
BR-6	57.11	191.89	62.23	Fracture	N78W/62SW	101.9		
BR-6	58.26	209.08	67.81	Fracture	N61W/68SW	119.1		
BR-6	60.74	196.31	64.25	Fracture	N74W/64SW	106.3		
BR-6	61.1	31.42	84.3	Fracture	N59W/84NE	301.4		
BR-6	61.19	93.08	56.4	Fracture	N3E/56SE	3.1		
BR-6	61.85	82.28	59.25	Fracture	N8W/59NE	352.3		
BR-6	62.51	88.05	61.5	Fracture	N2W/62NE	358.1		
BR-6	64.43	83.08	53.65	Fracture	N7W/54NE	353.1		
BR-6	64.77	192.87	68.32	Fracture	N77W/68SW	102.9		
BR-6	65.63	70.82	61.13	Fracture	N19W/61NE	340.8		

ASCT Web-based Document: Training Videos

Selection

Home

Search this website

Navigating this Website

- 1 Introduction
- 2 ASCT Implementation
- 3 Direct Sensing
- 4 Borehole Geophysics
- 5 Surface Geophysics
- 6 Remote Sensing

7 Stakeholder and Tribal Perspectives

- 8 Regulatory Perspective
- 9 Case Studies
- Additional Information

ITRC ASCT Training Videos

Summary

The Advanced Site Characterization Tools (ASCT) Team has created a series of short videos to help you navigate the document and provide examples of the application of these tools. The videos include:

Tool

Descriptions

- An<u>Introduction to ASCT</u> and the Web-Based Technical and Regulatory Guidance Document.
- An example of the <u>application of Direct Sensing Tools</u> (<u>Section 3</u>) using a LIF Survey with UVOST® to develop a representation of an <u>LNAPL</u> Plume.
- A discussion of the <u>3-D representation of the LNAPL</u> <u>Plume</u>

Training

Videos

 <u>An example of the application of Borehole Geophysics tools</u> (<u>Section 4</u>) using a suite of geophysical logs including borehole caliper, fluid temperature/resistivity, natural gamma, Optical Televiewer (OTV), Acoustic Televiewer (ATV), and Heat Pulse Flowmeter (HPFM) to evaluate the bedrock fracture geometry and groundwater quality, and to identify hydraulically active fractures.

Case

Studies

Checklists

- An example of the <u>application of Surface Geophysics tools</u> (<u>Section 5</u>) using seismic refraction, electric resistivity, and multichannel analysis of seismic waves to provide data to locate monitoring well locations in fractured bedrock.
- Example uses of <u>Remote Sensing tools</u> (Section 6).
³² ITRC's Optimizing Injection Strategies and In situ Remediation Performance

✗ INTERSTAT

Optimizing Injection Strategies and In situ Remediation Performance (OIS-ISRP-1)

Free Online Access at: https://ois-isrp-1.itrcweb.org

33	What is Optimization?	ANOTAL STATE
	Optimization is the effort (at any clean-up phase) to identify and implement actions that improve effectiveness and cost-efficiency of that phase. (Fron ITRC-GRO-1)	<u>n</u>
	Optimizing in situ remediation is:	
	The management of risks and uncertainties through <u>sound</u> science and <u>engineering</u> during different stages of in situ remedy <u>planning</u> and <u>implementation</u>	

³⁷ What Do We Need To Know? The RDC TABLE (2-2)

Devementeve		oproach	Remediation Phase/Step		
Faidmeters	Abiotic	Biotic	Alternatives Screening	Remedial Design	Performance Monitoring
Physi	cal Proper	ties			
Provenance and Mineralogy	М	М	HIGH	MEDIUM	LOW
Stratigraphy	М	М	MEDIUM	HIGH	LOW
Degree of Weathering of Geologic Formation	М	М	MEDIUM	HIGH	LOW
Fracture Representative Aperture and Length	М	М	MEDIUM	HIGH	LOW
Fracture Connectivity / Rock Quality Designation	М	М	MEDIUM	HIGH	LOW
Fracture Orientation	М	М	MEDIUM	HIGH	LOW
Grain Size Distribution	М	М	LOW	HIGH	LOW
Bulk Density	М	М	LOW	HIGH	LOW
Fraction of Organic Carbon	М	М	MEDIUM	HIGH	LOW
Primary and Secondary Porosity		М	MEDIUM	HIGH	LOW

ITRC OIS-ISRP-1 Table 2-2

³⁸ THE "HOVER" TABLE (2-2)

Provenance and mineralogy of a rock or soil matrix are the properties of its physicochemical formation - hase/Step geologic structure, chemical composition, distribution, and occurrence. They are the governing factors for the physical, flow, and geochemical properties, discussed in Table 2-2, that are necessary to understand and quantify in order to design an optimal in-situ approach.

al Performance Monitoring

Pliysi	cai Proper	ues			
Provenance and Mineralogy	М	м	HIGH	MEDIUM	LOW
Stratigraphy	М	М	MEDIUM	HIGH	LOW
Degree of Weathering of Geologic Formation	М	М	MEDIUM	HIGH	LOW
Fracture Representative Aperture and Length	М	М	MEDIUM	HIGH	LOW
Fracture Connectivity / Rock Quality Designation	М	М	MEDIUM	HIGH	LOW
Fracture Orientation	М	М	MEDIUM	HIGH	LOW
Grain Size Distribution	М	М	LOW	HIGH	LOW
Bulk Density	М	М	LOW	HIGH	LOW
Fraction of Organic Carbon	М	М	MEDIUM	HIGH	LOW
Primary and Secondary Porosity	М	M	MEDIUM	HIGH	LOW

³⁹ Flow Properties					* INTERSTATE * I I I I I I I I I I I I I I I I I I I
Daramatara	In Situ Aj	oproach	Rem	ediation Phase/	Step
Parameters	Abiotic	Biotic	Alternatives Screening	Remedial Design	Performance Monitoring
Flov	w Properti	es			
Anisotropy refers to the directionality of physical aquifer pr	roperties. La	ayered ur	nits are generally	HIGH	HIGH
anisotropic, with continuity of properties and flow in the lat	eral direction	on, limited	l in the vertical	HIGH	HIGH
direction by low permeability layers.				HIGH	LOW
Dec	М	M	HIGH	HIGH	LOW
Anisotropy	М	М	HIGH	HIGH	LOW
Effective rorosity	М	М	HIGH	HIGH	LOW
Velocity/Flux	М	М	HIGH	HIGH	HIGH
ITRC OIS-ISRP-1 Table 2-2				ENVIRONMEN	

Aqueous Geochemistry

Devenuetore			pproach	Rer	mediation Phase/S	ITRC OIS	; —	
	Parameters		Biotic	Alternatives Screening	Remedial Design	Performance Monitoring	ISRP-1 Ta	able
	Δαμοου	Goochou	mictry				2-2	
	Sulfate is naturally present in many ground waters as a product of geologic formations and their naturally occurring minerals and is often elevated in saline waters. It can also be a manufacturing or agricultural contaminant and a byproduct of persulfate used in some ISCO treatments. Sulfate needs to be carefully considered when selecting a remedial approach, as it can be beneficial and impeding, depending on the technology selected. Natural or pre-remediation sulfate at elevated concentrations can inhibit reductive processes such as reductive dechlorination, because sulfate, at elevated concentrations, is a powerful competitor for electrons. Typically, approximately 400 mg/L or greater sulfate at pre-remediation conditions can be a potential cause for concern (for reductive dechlorination) and special consideration for dosing. On the other hand, sulfate can react in situ with iron to form iron sulfides, which can provide long-term anaerobic chemical reduction. Sulfate reduction is yet another process, where sulfate is used as the primary electron acceptor, that can degrade specific contaminants (i.e., petroleum hydrocarbons).							
		М	М	MEDIUM	HIGH	HIGH		
	Sulfate (SO $_4^{2-}$)	М	М	HIGH	HIGH	HIGH		
		М	М	LOW	MEDIUM	HIGH		
	Chloride (Cl ⁻)	L	М	MEDIUM	LOW	MEDIUM		
	COD (chemical oxygen demand)	L	L	LOW	LOW	LOW		
	SOD (soil oxidant demand)	М	L	MEDIUM	HIGH	LOW		
	TOD (total oxidant demand)	М	L	MEDIUM	HIGH	LOW		
	NOI (natural oxidant interaction)	М	L	MEDIUM	HIGH	LOW		
	TOC (total organic carbon)	М	М	MEDIUM	HIGH	MEDIUM		
	Anions, cations	Individually	listed					
	Arsenite (As ⁺³)	М	L	LOW	MEDIUM	HIGH		
	Arsenate (As ⁺⁵)	М	М	MEDIUM	HIGH	MEDIUM		
	Chromium (Cr ⁺³)	М	М	MEDIUM	HIGH	MEDIUM	FDIC	Frent
	Chromium (Cr ⁺⁶)	М	L	LOW	MEDIUM	HIGH	ENVIRONMENTAL RESEARCH	
	Other Heavy Metals (e.g., lead, copper, selenium)	L	L	LOW	MEDIUM	MEDIUM		ECOS

Commonly Encountered Issues

	Commonly	Encountered Issues Associa	ated with Remedial Design Characterization – Section 2				
Lithology	Contaminant	Challenges, Lessons Learned, and/or Best Practices	Discussion, Document Section, Links				
Bedrock		The amount of contaminant mass sorbed into bedrock secondary porosity.	(<u>ITRC 2017a</u>)				
Soil		Lack of understanding of contaminant mass sorbed onto finer grained soils.	Application of MiHPT, MiHPT-CPT coupled with high density soil sampling to determine extent and distribution of contaminant (mass (<u>ITRC 2015</u>).				
		Limitations of solvent extraction in quantifying mass sorbed into soil.	See <u>Discrete fracture network approach for studying contamination in</u> <u>fractured rock</u>				
Groundwater		Variability of K and calculated seepage velocity in contaminated intervals is needed to estimate ROI delivery approaches and residence time within ROI.	Higher resolution slug testing, tracer testing, or pilot testing with monitoring to determine amendment distribution in effective pore space.				
		Mischaracterization of mass flux to be targeted in a mass flux reduction strategy.	Higher resolution sampling to identify transmissive zones for injection based on defined targeted K values, contaminant mass, and heterogeneity within the TTZ.				
	NAPL or DNAPL	Mischaracterization resulting in not identifying the presence of LNAPL or DNAPL that overwhelms efficacy of in situ treatment.	Evaluate vertical extent of TTZ for presence of LNAPL or DNAPL (ITRC 2015) (ITRC 2018).				

ITRC OIS-ISRP-1 Table 1-1 (See Additional Information, Appendix B) Commonly Encountered Issues with In Situ Remediation

Delivery Methods (Table 3-4)

42

"Widely used = •", "Site-specific = II", and "Not applicable = NA"

*** INTERSTATE**

NCIL

ECHNOLOGY

Delivery Technique				Solid II [[Permeable	
Hydrogeologic Characteristics <u>Unified Soil</u> <u>Classification System</u>	Direct Push Injection (DPI) [<u>D1</u>]	Injection Through Wells & Boreholes [D2]	Electrokinetics This is injection through wells. [<u>D3]</u>	Hydraulic Delivery Through Wells & Boreholes [<u>D5</u>]	Pneumatic Delivery Through Open Boreholes [D6]	Reactive Barriers (PRBs) [D7]
Gravels	• (Sonic)	•	NA	NA	NA	•
Cobbles	• (Sonic)	•	NA	NA	NA	•
Sandy Soils (Sm, Sc, Sp, Sw)	•	•	NA		۳	•
Silty Soils (Ml, Mh)	•		•	•	•	•
Clayey Soils (Cl, Ch, Oh)	•		•	•	•	•
Weathered Bedrock	•	•		•	•	
Competent/Fractured Bedrock	NA	•	NA		۳	
K ≤ 10 ⁻³ to 10 ⁻⁴ (Low Perm Soils)	•		•	•	•	•
K ≥ 10 ⁻³ (High Perm Soils)	•	•		۳		•
Depth > Direct Push Capabilities	NA	•				

43

Appendix D. Injection Fact Sheets

Table of Contents

<u>D1 Direct Push Delivery Methods</u> <u>D1.1 Types of Equipment</u> <u>D1.2 Types of Delivery</u> <u>D1.3 Advantages</u> <u>D1.4 Limitations</u>

D2 Injection Through Wells & Boreholes D2.1 Types of Equipment D2.2 Types of Delivery D2.3 Advantages D2.4 Limitations

D3 Electrokinetics Delivery Methods D3.1 Types of Equipment D3.2 Types of Delivery/Electrodes D3.3 Advantages D3.4 Limitations

<u>D4 Solid Injection Principles</u> <u>D4.1 Fracture-Based Delivery</u> <u>D4.2 Governing Principles</u> <u>D4.3 Differences between Hydraulic and Pneumatic</u> <u>Fracturing</u> D5 Hydraulic Fracturing-Based Delivery Methods D5.1 Types of Equipment D5.2 Types of Delivery D5.3 Advantages D5.4 Limitations

<u>D6 Pneumatic Fracturing-Based Delivery Methods</u> <u>D6.1 Types of Equipment</u> <u>D6.2 Types of Delivery</u> <u>D6.3 Advantages</u> D6.4 Limitations

D7 Permeable Reactive Barrier Construction D7.1 Types of Equipment D7.2 Types of Delivery D7.3 Advantages D7.4 Limitations

Amendment Factsheets

Search this website

Additional Information

Appendix A. Amendments and Other Additives

> Appendix A. Amendments and Other Additives Overview

A1 Common Biotic Amendments

A2 Abiotic Amendments

A3 Other additives

Optimizing Injection Strategies and In situ Remediation Performance HOME

Appendix A: Amendments and Other Additives

The following Fact Sheets discuss the Amendment and four topics related to it:

- Limitations
- Other Considerations
- Health and Safety
- Additional Links and Information

⁴⁵ Overall Course Summary – Call to Action

- RDC is key to developing detailed Conceptual Site Model
 - Design of amendment, dose and delivery is an iterative process with multiple feedback loops
- Monitoring and data analysis inform adaptive implementation and feedback optimization

Appendix F Checklist

Performance Evaluation & Optimization of In situ Remediation

Predictable and Optimized Outcome for In Situ Remedies using sound science and engineering

⁵ ITRC's TPH Risk Evaluation at Petroleum-Contaminated Sites

Welcome

TPH Risk Evaluation at Petroleum-Contaminated Sites (TPHRisk-1)

Free Online Access at: https://tphrisk-1.itrcweb.org/

The Use of Geophysics to Determine Placement of 5 Bedrock Monitoring Wells to Eliminate Data Gaps

Vicki Voisard

Commonwealth of Kentucky Department for Environmental Protection Division of Waste Management Underground Storage Tank (UST) Branch

A CASE STUDY IN BOYLE COUNTY, KY

Many underground storage tank (UST) sites in KY are located in karst areas with nearby creeks and springs and this site has all 3.

Site map courtesy by Shield Environmental

SITE HISTORY

- On March 20, 2014 two USTs were removed at this site and it was noted there was visible soil staining on the pit walls and notable petroleum odor.
- Depth of pit was 5.5' and bedrock was encountered at 3'.
- In August 2015 twelve soil borings were advanced to refusal at the top of bedrock, which ranged from 3.70 to 6.0 feet below ground surface (ft bgs).
- In February 2018, it was determined that data gaps related to the subsurface conditions at this site needed to be identified. It was decided a Geophysical Investigation was needed to place bedrock wells.

SITE GEOLOGY

The unconsolidated material beneath the site is predominately clayey-silty soil. The first bedrock unit encountered is the middle Devonian-aged New Albany Shale, which is underlain by the Boyle Formation. The Boyle formation is described as dolomite conglomerate, dolomite/dolomitic limestone and limestone.

	Legend:
Clai	Alluvium (Guatemary - Guaternary)
0177	High-level fluvial deposits (Tertiary - Guatemary)
9Kgs	Gravel and sand (Tertiary - Ouatemary)
Mol	St. Louis Limestone (Upper Mississippian - Upper Mississippian)
Mish	Solem and Harrodsburg Limestones (Upper Mississippian - Upper Mississippian)
Maser	Salem and Warsaw Limestones (Upper Mississippian - Upper Mississippian)
Mb	Borden Formation (Lower Mississippian - Lower Mississippian)
More	Muldraugh Member (Lower Mississippian - Lower Mississippian)
Mitmp	New Providence Shale Member (Lower Missassippian - Lover Missassippian)
MDna	New Albany Shale (Middle Devonian - Lower Mississippian)
	Boyle Dolom its (also Boyle Limestone, Boyle Formation) (Middle Devonian - Upper Devonian)
100	Brassfield Dolomite (Lower Silunan - Lower Silunan)
Cd	Drakes Formation (Upper Ordevician - Upper Ordevician)
Ca	Ashlock Fermation (Upper Ordovician)
Ogl	Grant Lake Limestone (Upper Ordovician – Upper Ordovician)
Cice:	Calleway Greek Limestone (Upper Ordevician - Upper Ordevician)
00	Garrard Siltstone (Middle Ordovician - Upper Ordovician)
Qef	Clays Ferry Formation (Middle Ondovician - Upper Ondovician)
Qlu	Upper part of Lexington Limestone (Lower Ordovicion - Middle Ordovicion)
Office 1	Brannon Meimber (Lower Ordovician - Middle Ordovician)
OH	Tanglewood Limestone Member (1) (Lower Ordovician - Middle Ordovician)

Why Surface & Borehole Geophysics?

Several items were consider when making decisions on a path forward for this particular site.

- Size of the lot (165' x 105')
- Thickness of the New Albany Shale
- Depth to the Limestone/Dolomite Contact
- Mitchell's Spring to the North

Using Surface Geophysics we would be able to determine the best locations for the 5 bedrock monitoring wells and with the Borehole Geophysics we would be able to properly screen the wells at the appropriate depths.

SURFACE GEOPHYSICS

The following Technologies and instruments were used for the surface geophysics investigation in order to determine buried items.

- Terrain conductivity with localized ground penetrating radar (GPR).
- CDM Explorer is a hand-held, digital, multi-antenna sensor.

GPR Imagery about 7' bgs

Graphical data representations courtesy of Mundell & Associates

Surface Geophysics

Seismic Refraction Profiling

In order to determine geologic layers a seismic line with geophones (3' spacing) and a sledgehammer used to hit onto a metal plate sending shockwaves down to refract along the boundaries between geologic layers and return to the surface.

Surface Geophysics

• 2-Dimensional resistivity

Profile Line 1

Proposed Monitoring Well Locations

NOTES:

 Tank PH: Over-Excavation, Domestic Well, Sepic Tank, and Heating Oil Tank locations are approximate and wave determined based on "Over-Excavation Area Map. - May 2016", provided by Sheild 2. Aarial photo is provided for site reference only. No claim is made as to the accuracy or completeness of this information.
Coordinates are referenced according to UTM, Zone 16N (meters), WGS84 datum.

 Topographic contours were gridded using LiDAR data from Kentucky's Aerial Photography & Elevation Data Program.

Base Map Provided By:

110 South Downey Avenue Indianapolis, Indiana 46219 317-630-9060, fax 317-630-9065 www.Mundel/Associates.com

Resistivity and Seismic Profile Line 2

Surface Geophysics Results

- Miscellaneous metallic debris may be present in the shallow subsurface on the western side of the building.
- Indication of undulating bedrock surface (between about 4 to 18 ft bgs).
- The topographic high of the bedrock surface is in the southern portion of the site.
- A potential preferential groundwater/contaminant mass pathways exist at depth in the vicinity of the former tank pit.

Drill 5 MWs into Bedrock

- Overburden was drilled through to bedrock and 6" PVC outer casings installed
- An Air Rotary Rig was used in the bedrock to advance the hole to 25' bgs

MW-3 located on the NW corner of the property

MW-5 located near the SE corner of the building

Borehole Geophysics

- The following Borehole Geophysical Methods were used in the investigation:
- Three-Arm Caliper Establishes diameter changes along the borehole profile. Locations of fracture zones can be interpreted.
- Natural Gamma uses a natural gamma probe to provide information about the geologic layers. Clay minerals are the most commonly observed natural gamma emitters.

cont. Borehole Geophysics

- Acoustic Televiewer Used to image the bedrock fractures within the borehole.
- Optical Televiewer Provide detailed, oriented, structural and geological information for the dry sections in each borehole.

Geophysical Borehole Logs

Geophysical Borehole Log MW-3

<u>MW-3</u>

- Outer Casing set at 7.1'
- Black Fissile Shale (7.1'-10.3'),
- Large vug below Contact with upper Shale and Lower Limestone/Dolomite (10.3'-11.5'),
- Maximum Caliper reading 8.3 in.
- Vuggy (12.3-13.6),
- Product Seep at 15.2',
- Groundwater with Slight Product Sheen at 16.8',
- Open Fracture Planes from 18.2'-19.2'
- Vuggy (19.7'-20.6'),
- Open Fracture Planes from 23.4' to 23.7'
- Blue Line 3 Arm Caliper 5.5 to 7 inches
- Red Line Gamma 0 to 300 cps

Borehole log courtesy of Mundell & Associates

Geophysical Borehole Log MW-3

Borehole Information

 Once the borehole logs were generated from the information collected a clear picture was formed on how to design the bedrock monitoring wells to maximize sampling of water bearing fractures and smear zones that were encountered in the investigation.

ACKNOWLEDGEMENTS

Shield Environmental Associates 948 Floyd Drive Lexington, Kentucky 40505

<u>Mundell Associates</u> 110 South Downey Avenue Indianapolis, Indiana 46219 <u>Strata Group</u> 648 Blue Sky Parkway Lexington, Kentucky 40509

Thank You!

4 HTUC

н Ш

0

COMMONWEALTH OF KENTUCKY

Energy and Environment Cabinet Department for Environmental Protection Division of Waste Management **UST Branch** 300 Sower Boulevard Frankfort, Kentucky 40601

Vicki Voisard

Vicki.voisard@ky.gov 502-782-6469 USTB

KENTUCKY UNDERGROUND STORAGE TANK BRANCH

ATHON WEN
LESSONS LEARNED AND THE EVOLUTION OF HIGH-DENSITY QUANTITATIVE CHARACTERIZATION AND SURGICAL HIGH-PRESSURE IN-SITU INJECTION

Bill Brab, PG, CPG

Senior Remediation Geologist

A Few Comments Before We Begin

Most remediation chemistries work in a beaker/column – so what causes failures?

- Inaccurate Loading/Dosing
 - Contaminant mass distribution is complex and scales with the heterogeneity of the lithology
 - Soil mass contribution is typically underestimated
- Contact
 - We all know contact is critical to success
 - Assess distribution to confirm design spacing/injection volumes

Trap & Treat® Remediation Process (The Approach)

High Density Qualitative Characterization

Goal is to develop a surgical remediation plan and evaluate combined remedies or approaches

First step is a thorough data review

- Geology (age and quality of logs)
- Groundwater levels
- Groundwater flow direction
- Groundwater concentrations
- Geochemistry
- Soil concentrations
- Prior remedial efforts

High Density QC Development

Detailed understanding of vertical and horizontal distribution of total mass

- The Remedial Design Characterization (RDC) is a critical step to fine tune the CSM and optimize the remedial design
 - Dense soil vertical profiles (e.g. 1-2 ft)
 - Hydropunch or nested temporary wells to define horizontal and vertical distribution of groundwater impacts
 - Assist in distribution assessment during implementation phase
 - Integrate High Resolution Site Characterization tools when applicable (e.g. HPT, UVOST)
 - Mass discharge calculation necessary if designing a barrier
 - May need to install nested wells to assess K vertically
 - Geophysics and packer testing necessary if working in competent bedrock

Laboratory Methods

- Volatiles GC/MS Method 8260b/c
- Total Fraction TPH-GRO and TPH-DRO - GC FID/PID Method 8015
- Anions and VFAs Ion Chromatography Method 300.1
- Dissolved Gases Method RSK-175

Why Saturated Soil Contaminant Data Is So Important

- GW @ 54 mg/L = 454 mg/ft³
- Soil @ 90 mg/kg = 4,500 mg/ft³
- In Saturated Conditions: The Soil Contains as much as 10 times the Contaminant Mass As Does The Groundwater

Soil Data from Diesel LNAPL Site

Depth	SB-19	SB-20	SB-21	SB-23	SB-24	SB-26	SB-27	SB-28	SB-30	SB-31	SB-32	SB-33	SB-34	SB-35	SB-36	SB-39	
23			3 <i>,</i> 370			14,000			3,420								
24	219		ND	1,650		ND						5,760			258		
25		ND	7,180				9,390	214	17,000	4,500	7,050		643	789		4,650	GW High
26	ND		32,200	6,770	5,460	4,030	62,100					15,000					
27		13,900						ND	6,440	ND	7,720	28,200	13,700	14,300	218	ND	
28	5,830	ND	2,370	1,480	473	ND	111	ND		28,600					1,610	1,510	GW Avg
29	153			ND				137	165	12,600	6,500	753	9,330	82		ND	CMLOW
30		2,910	258			104							ND			3,170	GW LOW
31				25,900	ND		412				248	ND	3,060	ND	ND	306	
32		94								ND				5,590		498	
33				270			82						ND				
34				137	729						ND			333		ND	
35																	
36					118									ND			

TPH-DRO in soil (mg/kg) - performed by RPI Project Support Laboratory

UVOST/LIF

21% RE

benzene

GRO

UVOST/LIF (cont.)

HDCSM and High-Resolution Site Characterization Integration

Courtesy of Cascade Technical Services

Bedrock Considerations

Data Gaps and Holes in the Prelim CSM

- Long well screens that span an extended heterogeneous matrix
- Cased wells cannot be used for downhole geophysics or slurry injection
- No discrete groundwater characterization data
- Matrix characterization:
 - Little to no sorbed mass data → soil filled permeable zones?
 - Lithology logged from chips expelled during air rotary → need rock cores

Preliminary Designs and Estimates Based Upon:

- Thick saturated profiles with no indication of Hi-conc vs. Low-conc intervals
- Published or estimated porosities and hydraulic gradients
- Homogeneous stratigraphy
- Groundwater mass only

Bedrock RDC

Surface Geophysics

- 2D Electrical Resistivity (2D-ERI) and Induced Potential (IP)
- Multichannel Analysis of Surface Waves (MASW) or seismic-energy analysis

Characterization \rightarrow Injection Wells

- Open Borehole with surface casing
- Rock Cores logging and sampling of matrix

Downhole (wireline) Geophysics

Caliper, Acoustic/Optical Televiewer, Downhole Camera, etc.

Groundwater Characterization

- Pumping Tests
- Discrete Interval Analytical Sampling
- Response Data Transducers

RDC – 2D-ERI, IP, and MASW

RDC – Sonic and Rock Coring

RDC – Downhole Geophysics

RDC – Aquifer Characterization

Pressure Transducer Above Discrete Interval

Pressure Transducer w/in Discrete Interval

Grundfos Rediflo 2

Pressure Transducer Below Discrete Interval

RDC – Aquifer Discrete Sampling

RDC – Aquifer Discrete Sampling

>

20

5070

RDC – Aquifer Discrete Sampling

RW-4D Sample Intervals										
Benzene (ug/L)	Volume Pumped (g)									
184	5									
300	10 (LNAPL)									
355	10 (LNAPL)									
371	5									
443	5									
619	10									
425	10									
259	10									
	RW-4D Sample Intervals Benzene (ug/L) 184 300 355 371 443 619 425 259									

Slurry Application Best Practices

Typical "Top-Down" Injection

Proper method of installation depends on the product and delivery method

- Slurries = high flow rate and relatively small injection volumes
- Emplacement into formation
- Top-down = path of least resistance horizontal
- Dedicated temporary points

Injection Tips – Geometry and Configuration Matter

Low Flow, Low Pressure Injection

Doesn't account for low k zones

Preferential Flow

Uniform Distribution

No Fracturing ROI=f(pv,tv)

Injection Wells – limited coverage

The Fantasy

Reality

Flow follows path of least resistance

No control over injectate location

Very poor distribution likely

ROI Unknown

Pressure Signatures

Injection Grids

Permeable Reactive Barriers

Injection approach

- Multiple tightly spaced rows (3-4)
- Trench approach
 - Great for shallow applications

Injection wells may need to be installed for future injection events (e.g. TEA addition)

Bedrock Applications

- Portfolio of bedrock applications growing
- Characterization (geophysics and groundwater) critical to success
- Proper packer and pumping system selection will help minimize # of injection wells
- High flow/pressure systems necessary to drive ROI (higher than overburden)

Injection - The Custom Triplex

Injection - Triplex (Varied Flow Rates - GPM)

		er de	20		M Star	C-		and the set	Wax		HANNEL	
	RPM:	700	800	900	1000	1100	1200	1300	1400	1500	 W ALLANS	44
GEAR												
3		34	38	43	48	53	58	62	67	72		
4		45	52	58	65	71	77	84	90	97		
5		62	71	80	89	98	107	116	125	134		

Injection - Triplex (Varied Flow Rates)

Various Flow Rates

20 gpm, 60 gpm 120 gpm, 250 gpm

Trap & Treat® Concept

Contaminants sorb to activated carbon - "Trap"

- Decreases groundwater mass and flux immediately
- Disrupts groundwater/soil mass equilibrium to help drive desorption => Key to source area remediation
- Concentrated mass accelerates degradation rates
- Degradation mechanism is used "Treat"
 - Bioremediation (aerobic/anaerobic)
 - Chemical Reduction/Oxidation

BOS Technologies

BOS 100®

- Activated carbon impregnated with metallic iron
- Primarily used to treat chlorinated solvents (ethenes, ethanes, and methanes)

BOS 200®

- Primarily used to treat petroleum hydrocarbons
- Product consists of:
 - Activated Carbon
 - Terminal electron acceptors
 - Micro and macro nutrients
 - Consortium of facultative bacteria

CAT 100

- Activated Carbon Impregnated with Metallic Iron (BOS 100[®])
- Complex Carbohydrate Food Grade Starch
- One Set of Microorganisms Designed to Degrade COCs
- Second Set of Microorganisms Designed to Degrade the Carbohydrate
- Developed for High Concentration Scenarios (DNAPL) Where Fe Alone Would Limit Long-term Performance

Thank You For Joining Us

RPI Group Webinar Series: https://www.trapandtreat.com/video-library-2/

Bill Brab, PG, CPG bbrab@astenv.com

THANK YOU, SPEAKERS!

Kristopher McCandless, CPG Environmental Geologist | VA DEQ

Vicki Voisard, PG Geologist Registered | KY DEP

Bill Brab, CPG, PG

Senior Remediation Geologist | AST Environmental, Inc.

UST Inspector Training Series: https://neiwpcc.org/our-programs/underground-storage-tanks/ust-training-resources-inspector-training/

LUST Corrective Action Series: <u>https://neiwpcc.org/our-programs/underground-storage-tanks/lust-training-resources-</u> <u>corrective-action/webinar-archive-corrective-action/</u>

LUST Line: <u>https://neiwpcc.org/our-programs/underground-</u> <u>storage-tanks/l-u-s-t-line/</u>

Thank you for your participation!

NTC WEBINAR SERIES:

LUST CORRECTIVE ACTION: RESOURCES, CASE STUDY, AND A DISCUSSION ON REMEDIAL DESIGN CHARACTERIZATION AND IN-SITU REMEDIAL METHODS

10/14/2020