USING GOTOWEBINAR

Two Options for Audio:
 1. Use your computer's speakers
 2. Call in by phone using the call-in number and access code in the Audio section of the control box.

All participants are **muted** by default.

Questions: Use the "send question" option in the chat panel to ask questions throughout the presentation.

Ask for help! Use the questions box to let us know if you have technical difficulties. You can also **raise your hand** for help.

LESSONS LEARNED FROM HRSC USED AT LUST SITES

Welcome to NEIWPCC's addition in the LUST Corrective Action Webinar Series

6/24/2020

TODAY'S SPEAKERS

John Sohl, President and CEO | Columbia Technologies

Dorothy Malaier, P.G. Chief, UST Corrective Action State and Federal Funds Section | *Alabama DEM*

Ashleigh Thrash, P.G. Section Manager, Assessment & Non-Permitted Petroleum Section | South Carolina DHEC

Agenda

- Lessons Learned from 150 HRSC Investigations and Failed UST Remediation Sites
- High Resolution Site Characterization in Alabama- A Strategy to Advance UST Release Cleanups in Alabama
- Utilization of High-Resolution Site Characterization (HRSC) In South Carolina
- Q&A
- End

Lessons Learned from 150 HRSC Investigations and Failed UST Remediation Sites

John H Sohl III www.columbiatechnologies.com jsohl@columbiatechnologies.com +1-301-455-7644

© 2020 CC

Technical Scope of Work

- 1. Review historical work plans and data to establish current CSM
- 2. Map residual source material and evaluate its characteristics
- 3. Evaluate stability of the LNAPL body
- 4. Evaluate impact to groundwater, dissolved phase plume, and migration path mass transport
- 5. Evaluate potential vapor intrusion concerns.
- 6. Evaluate spatial orientation of installed monitoring and recovery well screen intervals against the LNAPL location and soil permeability.
- 7. Evaluate potential for natural source zone depletion.
- © 2020 COLUMBI 8 cch Revise the CSM

Preliminary Findings from 150 Investigations

Finding	Number of Sites
1. Significant gaps in the conceptual site models	145 _OIP-10
2. Residual LNAPL	150
3. Residual LNAPL below the air-water interface	150
4. Layered site stratigraphy	140
5. The residual LNAPL is in the tighter zones	140
6. Chemical injections did not reach the tighter zones	20 of 20
7. Redistribution of the LNAPL	70
8. LNAPL redistributed by vacuum enhanced extraction	70 of 70
9. Residual LNAPL is bound to soil	140
10. Misaligned monitoring and recovery wells	50
11. Groundwater redox parameters are good indicators	2 of 2

CASE EXAMPLE STEPHENS FUEL

CASE EXAMPLE MAPLE AVE

CASE EXAMPLE FORMER TIGER OIL

Contracting – State Limitations

1. The State regulators and reimbursement funds do not have a mechanism to identify stalled or failed remediation projects.

2.There is generally not a funding or reimbursement mechanism for reevaluating the conceptual site model where the remediation has failed or stalled.

3.There is generally not a funding or reimbursement mechanism for HRSC with adaptive work plan execution.

Recommendations

- 1. Encourage the States to upgrade the conceptual site models of failed and stalled remediation sites.
- 2. Implement ITRC LNAPL-3 Management guidelines.
- Implement HRSC early, especially prior to any remedial activities that lower the groundwater or inject chemicals.
- 4. Incorporate saturated soil sampling into protocols and contract mechanisms.
- 5. Add total petroleum hydrocarbon (TPH) analyses to the soil sampling to verify stability of the LNAPL body.
- 6. Gather NSZD data to answer questions regarding the residual LNAPL's effect on groundwater.

Question & Answer

Please address all questions to a speaker

High Resolution Site Characterization in Alabama

Dorothy Malaier UST Corrective Action State and Federal Funds Section

> NEIWPCC WEBINAR June 24, 2020

Geologic Map of Alabama

Coastal Plain
Piedmont
Valley and Ridge
Highland Rim
Karst areas

OPEN UST RELEASE INCIDENT UNIVERSE

TOTAL NUMBER OF UST RELESE INCIDENTS = 5,249 NUMBER OF OPEN UST RELEASE INCIDENTS = 913

Advancing Cleanups...

? How do we increase the number of cleanups?

? How do we decrease the cleanup time?

? What do we not know that we could know?

5 Experiences with High Resolution Site Characterization

- Emergency Response Decatur
- Multiple Sources Theodore
- Old Release- Tuscaloosa
- Vertical Extent of Contamination Glencoe
- Large Release Spanish Fort

Emergency Response

Decatur, Alabama

Emergency Response: HRSC's role in the emergency response

- Emergency response in January 2020
- High resolution investigation performed in early February 2020
- The purpose of the study was to accurately delineate both vertically and laterally any residual light non-aqueous phase liquid (LNAPL) at the site, to identify the soil structure in which any LNAPL resides for permeability and potential for recovery, and to identify pathways from the source area to the sanitary sewer.
- Remediation system installed in late January 2020

Are there multiple sources?

► Theodore, Alabama

S UST Incident Sites × +

ADEM UST Incident Sites

"The highest concentrations of contaminants in groundwater monitoring wells are off site both to the north (MW-12) and to the south (MW-20). These do not appear to have originated on the property itself, based on significantly lower MIP-PID responses and groundwater concentrations in monitoring wells near the tank enclosure and service island."

Going forward....

- Highest benzene concentrations continue to be in offsite wells
- Site continues in a monitoring only program
- Investigation into deed documents to determine if adjacent properties may have been used for fuel storage is underway

Old Incident (1991)

▶ Tuscaloosa, Alabama

MW15R VZ21 6/14/18 VZ25 6/14/18 MW1 VZ3 MW24 VZ20 VZ26 MW11 6/14/18 6/14/18 6/14/18 6/14/18 6/13/18 6/13/18 6/13/18 ASS 3.7 1.3 3.4 <0.00 0.10/ <0.00 SE^{MW7} 26.2 3.2 16.1 <0.001 <0.001 28.1 9.7 1.7 OSE 0.054 2.5 53.4 <0.001 1.3 0.640 4.3 <0.001 <0.00 <0.00 <0.00 <0.001 E X M 1.2 0.074 0.051 X <0.00 M 0.015 Naph <0.00 0.140 21.8 0.065 M 1.9 Nanh < 0.00 Naph Nanh lank Naph Naph CONCRETE PLOT φ 0 CONCRETE PLUME VZ25 ∎∮ CONCRETE 0 φ **= = ⊕**VZ26 MW6 MW24 FILINE 6/14/18 WW11 1 <0.0 MW1 <0.00 0 mAS18 \odot 1 BLVD DISPENSER SICN MW15R UST 172 MW6 GASOLINE EV N AW 7R WALLACE / 🐨 ^{MW2} NW16 ~/ MW17R VZ10 6/13/18 6/14/18 0 0 VZ10 1.5 12.9 2.2 11.6 1.4 0.820 F \$ < 0.00 < 0.00 M ____ B Naph 1.3 A LURLEEN STATION Ħ FORMER BUILDING USED OIL UST \odot MW4 _____ DRY MW5 EQUIPMENT the set of the set MW4 φ 32nd ST 6/13/18 <0.00 < 0.00 <0.00 Dissolved Constituent Concentration Map June 13-14, 2018 Х M Naph

4

LE	GEND	
And Adda	CHEST CEP	

CLAY TO SILTY CLAY

SILTY FINE SAND TO MEDIUM SAND

BACK FILL MATERIAL

Depth (feet)	SAMPLE	WL a o t v c c r l	HNU Reading (ppm)	Stid. Pen. Test (Nows/N)	11" O.D. Hollow Stem: 4' to 20' Description of LOGGED BY : W. M. Flores
	Γ	Π			4" Asphalt
- 5 -	X		50	5	Loose orange SILTY SAND (SM) Dark orange SILTY CLAY (CL).w/sandy CLAY charcoal lens trace of sand and gravel
10-	K		100	8	Loose brown CLAYEY SAND (SC) w/gravel
-15 -	X	V	100	7	Loose dark orange coarse SAND (SP)
-20-	X		10	19	gray, tan and orange Gray CLAYEY SAND (SC) Boring TP-1 was terminated at 20 feet.
	X	Sh Sto	ielby Tul d. Penetr plit Spoo	be ation Te: on Sampl	Image: Auger Cuttings Valuer First Noted NOTE : No geotechnical laborator testing performed. Soil classification are based upon visual, field observation and should be considered as such to an ad should be considered as such to an ad should be considered as such to an advect the such as the such

Going Forward after the HRSC.....

- The DPVE system will remain shut off
- Periodic MEME events will be performed in the vicinity of the well with the highest groundwater contamination
- Contamination is better delineated and will allow for a more focused remedial method - Injection?

Vertical Extent of Contamination

▶ Glencoe, Alabama

After the HSRC....

- New recovery wells were installed in the identified zones (with difficulty)
- Recently .9' of free product observed in a site well that typically contained over 19 ppm benzene
- MEME events will be performed to reduce free product and dissolved concentrations in a more focused manner

Large Release Site

Spanish Fort, Alabama

Going Forward...

- Modified Corrective Action Plan was developed
- Horizontal wells will be installed to focus on zones under the highway
- New recovery wells to be placed on site; DPVE system has been re-installed
- SVE wells were installed to address the shallow intervals identified during the HRSC

CONSIDERATIONS AND CHALLENGES:

- Property owners may be concerned about numerous boreholes
- Select the tool suite that will provide the data you need to make future decisions
- The right of way at some sites reduces the ability to "define" the plume
- Active stations are often difficult to drill due to existing tanks, piping and dispensers

CONSIDERATIONS AND CHALLENGES:

- Utility corridors often are a barrier the extent of plume still may not be defined
- The direct push rigs have depth limitations
- Existence of "pinnacles" and bedrock can reduce effectiveness of site investigation
- Collaboration between all parties education is key
- Use of data by consultants
- It's a dynamic process! Be Flexible!

HIGH RESOLUTION SITE CHARACTERIZATION

- Over 88 HRSCs have been approved/performed
- Spent over \$3.5 million on this technique
- Average cost is about \$42,000 per evaluation
- Information is valuable to site decision making

Question & Answer

Please address all questions to a speaker

South Carolina Department of Health and Environmental Control

Utilization of High-Resolution Site Characterization (HRSC) In South Carolina

IEC South Carolina Department of Health and Environmental Control

Why HRSC?

- Continuous improvement
- Input from contractor community
- Utilization of newer technologies

• Data gaps?

- Improve Site Conceptual Models (SCM)
 - Optimize clean-up

IEC South Carolina Department of Health and Environmental Control

Research and Training

- Met with contractors
- EPA training & guidance
- Interstate Technology and Regulatory Counsel (ITRC)

chec South Carolina Department of Health and Environmental Control

Goals

- Learn about technology
- Explore cost vs. benefit
- Fill in data gaps
- Optimize clean-ups
- Determine limitations & best use
- POSSIBLY determine a rate structure for more widespread use

South Carolina Department of Health and Environmental Control

- Pilot study
- Solicitation of bids for a collection of sites
- 2 contracts, 2 different contractors, 26 total sites throughout state
- Follow up with traditional methods

South Carolina Department of Health and Environmental Control

Site Selection

- Good Direct Push Technology candidates historically
- Legacy sites
- Different stages of assessment/corrective action
- Corrective action did not succeed
- Varying geology

The Tools

- Direct Push Technology
 - UVOST, MiHPT, OIPHPT
 - Traditional Field Screening
- Groundwater Sampling
- Soil Sampling
 - TPH
- Smartdata Solutions
- Rockworks, 4DIM

Case Study 1 – Larry's Body Shop

Standard Limited Assessment (1995)

Boring Number	Sample Date	OVA Field Screening Results (ppm)							
		2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14	14 - 16+	_
B-1	4-09-96	NS	490	NS	1975	NS	NS	1535	
B-2	4-09-96	NS	126	NS	175	NS	NS	219	
B-3*	4-09-96	0	>2500	>2500	>2500	NS	NS	NS	
B-4	4-09-96	0	1574	>2500	>2500	NS	NS	NS	
B-5	4-09-96	0	>2500	>2500	>2500	NS	NS	NS	
B-6	4-09-96	0	>2500	>2500	>2500	NS	NS	NS	
B-7	4-09-96	NS	804	NS	314	NS	NS	371	
B-8	4-09-96	NS	443	NS	820	NS	NS	>2500	
B-9	4-09-96	0	0	34	41	NS	NS	NS	
B-10	4-09-96	NS	NS	NS	0	NS	NS	NS	

Healthy People, Healthy Communities. South Carolina Department of Health and Environmental Control

Rapid Assessment (1997)

Boring Number	Sample Date	OVA Field Screening Results (ppm)							
		2 - 4	4 - 6	6 - 8	8 - 10	10 - 12	12 - 14	14 - 16+	_
B-1	4-09-96	NS	490	NS	1975	NS	NS	1535	
B-2	4-09-96	NS	126	NS	175	NS	NS	219	
B-3*	4-09-96	0	>2500	>2500	>2500	NS	NS	NS	
B-4	4-09-96	0	1574	>2500	>2500	NS	NS	NS	
B-5	4-09-96	0	>2500	>2500	>2500	NS	NS	NS	
B-6	4-09-96	0	>2500	>2500	>2500	NS	NS	NS	
B-7	4-09-96	NS	804	NS	314	NS	NS	371	
B-8	4-09-96	NS	443	NS	820	NS	NS	>2500	
B-9	4-09-96	0	0	34	41	NS	NS	NS	
B-10	4-09-96	NS	NS	NS	0	NS	NS	NS	

al Control

14183 - Larry's Body Shop

M02 MHP COLLECTIVE

HOI M05 H02 Ð M01 102 M02 M07 M08 4

M04

al Control

DAKUTA

TECHNOLOGIES

WW.DAKOTATECHNOLOGIES.CO

Larry Body Shop 14183

Envirorisk / 3759-2018-06- Unavailable / NA

Client / Job:

Operator / Unit:

MMA / UVOST1005

Unavailable / NA

Elevation:

Unavailable

X Coord.(Lng-E) / Fix:

25.95 ft

Max signal:

Date & Time:

205.8 %RE @ 13.43 ft

2019-08-07 08:01 EDT

 Better understanding of site geology

Lessons Learned

- Limitations/set backs
- Time commitment
- Actual Free-Phase
 Product (FPP)
 distribution
- Communication is KEY

Benefits and Results

- More accurate SCM
- Knowledge/Experience
- Outlook on future of assessments
- Gain information necessary to choose appropriate cleanup strategies
- Targeted clean-up approaches for faster and more effective clean-up

Question & Answer

Please address all questions to a speaker

Thank you for your participation

LUST Corrective Action Series: <u>https://neiwpcc.org/our-</u> programs/underground-storage-tanks/lust-training-resourcescorrective-action/webinar-archive-corrective-action/

UST Inspector Training Series: https://neiwpcc.org/our-programs/underground-storage-tanks/ust-training-resources-inspector-training/

LUST Line: <u>https://neiwpcc.org/our-programs/underground-</u> <u>storage-tanks/l-u-s-t-line/</u>

THANK YOU FOR YOUR PARTICIPATION

LUST Corrective Action Webinar Series

Lessons Learned from HRSC used at LUST Sites 6/24/20 Moderated by Nick Bissonnette- Environmental Analyst, *NEIWPCC*

THANK YOU FOR YOUR PARTICIPATION

