NH’s Progress in the Development of Biocriteria to Assess Wetland Condition

Sandra Crystall, PWS
New England Wetland Webinar Series 2020

Partially supported by US EPA Wetland Program Development Grants.
Overview

- How we started...
- This project.
- Results.
- Considerations for next steps.
The Progression
Biological Condition Gradient (BCG) and Maine's Tiered Aquatic Life Use (TALU)

1. Native or natural condition
 - Minimal loss of species; some density changes may occur

2. Some replacement of sensitive species; functions fully maintained
 - Some sensitive species maintained but notable replacement by more tolerant taxa; altered distributions; functions largely maintained

3. Tolerant species show increasing dominance; sensitive species are rare; functions altered
 - Severe alteration of structure and function
Maine DEP's Linear Discriminant Model
(12-variable version)

- Quantitative ecological attributes of the macroinvertebrate community to determine the strength of the association of a test community to any of Maine’s legislatively assigned water quality classes (Class A, B, or C).
- Where a class-specific probability value is greater than 0.4 but less than 0.6, an Indeterminate (I) status is assigned.
- Model minimum criteria:
 - Generic richness: 15
 - Total abundance: 50

Variables:
- Total mean abundance
- Ephemeroptera abundance
- Odonata relative abundance
- Trichoptera relative abundance
- Shredder taxa relative abundance
- Non-insect taxa relative richness
- MTI sensitive taxa abundance
- MTI sensitive taxa relative abundance
- MTI sensitive taxa richness
- MTI intermediate taxa relative abundance
- MTI intermediate taxa richness
- Ratio of MTI sensitive to eurytopic taxa abundance
Selected Maine Protocols for Wetland Assessment

- Maine DEP’s wetland biomonitoring protocols and predictive model.
 - Sampling macroinvertebrates.
 - Rapid assessment (Wetland Human Disturbance Assessment).
 - Water quality sampling.

- To which we added
 - Second rapid assessment -- Ecological Integrity Assessment (EIA).
 - Sampling vegetation.
 - Floristic Quality Assessment (FQA).
Floristic Quality Assessment - Identified weighted mean C thresholds (reference values) for 14 wetland system types.

Nichols, 2018. Reevaluating Exemplary Wetland Systems and Developing Thresholds for Interpreting Floristic Quality Assessment Scores. NHNHB.
Rapid Assessments: WHDA and EIA

- Desktop landscape analyses (GIS) followed by...
- Field-based observations of landscape features, hydrology, vegetation and soils.
Target wetland: Open-water lacustrine and palustrine wetlands and low gradient riverine backwater areas.

Contiguous wetland types.
Ecological Integrity Assessment (EIA)

Within the AA, unless noted:

- Hydrology.
- Vegetation.
- Landscape context (GIS).
 - Land Use Index.
 - Buffer zone within 100m, 250m and 500m.
 - Percent of Perimeter Having Buffer.
 - Intactness of 10m perimeter.
 - Average Buffer Width (up to 100m).
- Soil.
Wetland Human Disturbance Assessment (WHDA)

- Watershed characteristics and potential NPS pollution impacts.
- Vegetative modifications to wetland.
- Hydrologic modifications to wetland.
- Evidence of chemical pollutants in wetland and adjacent/upstream sources (GIS/imagery).

- Evaluates:
 - Watershed (land use).
 - 100-foot buffer around wetland.
 - Within wetland (AA).
Macroinvertebrate Sampling

- Water depth ≤ 1 meter.
- Three locations in each wetland.
- One-meter measured sweep technique with dip net; sieve the sample, then preserve.
- Contract taxonomist processed, identified and counted specimens.
- Taxonomic (and other data) provided to Maine DEP biomonitoring program for input to model to determine predicted attainment class.
Water Sampling

- Field meters at three macroinvertebrate sampling locations.
 - Dissolved oxygen.
 - pH.
 - Temperature.
 - Conductivity/ Specific conductance.

- One grab sample
 - Alkalinity, chloride, chlorophyll-\(a\), dissolved organic carbon (DOC) and nutrients \([\text{NO}_2+\text{NO}_3\), DOP, TP, TKN]\).
Vegetation Sampling

- Shrub rake.
- Retrieved aquatic vegetation with measured-sweep method at three macroinvertebrate sample locations.
- Also recorded vegetation observed but not part of retrieve.
- Developed species list.
- Applied floristic quality assessment.
Predictive Model

Results

A : 6
B: 14
C: 12
I: 10
Buffer rings are 100m, 250m, and 500m beyond assessment area.
Predicted Attainment Class B

Buffer rings are 100m, 250m, and 500m beyond assessment area.
Predicted Attainment Class C

Buffer rings are 100m, 250m, and 500m beyond assessment area.
Indeterminant Status

Buffer rings are 100m, 250m, and 500m beyond assessment area.
Rapid Assessments

EIA

- Predicted attainment class: A, B, C, I
- Better and worse categories

WHDA

- Predicted attainment class: A, B, C, I
- Better and worse categories
Floristic Quality Assessment

Mean C

Percent spp. w/ C = 0
(nonnative species)

Percent spp. w/ C ≥7-10
EIA - Average Buffer Width by Attainment Class
Alkalinity

ALKALINITY_MGL by Attainment Class

Environmental Services

24
Spearman Rank Correlations

Between chloride* and:

- EIA -0.83
 - Land Use Index -0.78
 - Avg. buffer width -0.68
- WHDA 0.77
- Percent Nonnative Species 0.72
- Mean C -0.52

* Similar correlation between specific conductance and the above parameters.
Macroinvertebrates: Functional Feeding Group by Predicated Attainment Class

- Other
- Scraper
- Shredder
- Piercer
- Predator
- Collector-gatherer
- Collector-filterer
Additional Observations

Documented:

- Plant species not yet documented in NH.
- Rare species.
- New locations of invasive species.
- Algal blooms (incl. cyanobacteria).
- Other wildlife.

Pectinatella sp. Nostoc sp. Spirogyra sp. Potamogeton crispus Lemna trisulca Wolffia brasiliensis Potamogeton zosteriformis
Challenges

- Sharing protocols is challenging.
 - Difficult to translate years of experience to detailed protocols.
 - Sampling in very organic substrate.
 - Occasional need for guidance when others are also in the field.
 - Lack the "evolutionary" process that leads to protocol and model development.
Considerations for next steps

Rapid Assessment/ FQA
- Continue application of EIA and FQA (and increase dataset for FQA thresholds).
- Collect additional data in non-exemplary wetlands.

Water Quality.
- Gather additional data on chloride or specific conductance and buffer width in open water wetlands.

Macroinvertebrates.
- Target wetland type to better define/refine target wetland population for model.
- Examine any temporal effects of macroinvertebrate sampling timeframe.
- Analyze macroinvertebrates by specific location where sampled (finer scale of analysis), especially in wetlands that have multiple open water areas.
In Summary

- We're not there yet (in terms of identifying biocriteria).
- We have information about NH’s wetlands that didn’t exist previously.
 - For wetlands that represent a range of human disturbance.
 - Documented new occurrences of rare and previously undocumented plant species (and additional invasive species locations).
- We have continued to build on prior work, which brings NH closer to being able to select a method and establish biocriteria and thresholds to characterize wetland condition.
With appreciation to sampling team members and Maine DEP biomonitoring staff!
Acknowledgments

Thanks to:

Maine DEP -- especially Jeanne DiFranco, Beth Connors, Tom Danielson, and Leon Tsomides for their guidance, support and sharing of information.

Karl Benedict, former colleague Sandi Mattfeldt Houghton, and interns Jessica Pearce, Jill Pavlik and Mariah Mitchell for their participation on and contributions to the sampling teams.

Colleagues in the Watershed Management Bureau for their guidance throughout the project and assistance with the analyses.

USEPA for support through the Wetland Program Development Grants.

sandra.crystall@des.nh.gov
The health of our waters is the principal measure of how we live on the land.

- Luna Leopold