People Caring About Water

A to Z Aerobic Treatment Units

April 2-4, 2019 Mystic Marriott Hotel Groton, Connecticut

Dr. Sara Heger

Objectives

- To describe aerobic treatment options that use aerobic digestion to lower organic compounds found in domestic wastewater
- To describe situations where these systems may be useful

Traditional Treatment

- Septic tank
 - Anaerobic treatment
 - Very little or no dissolved oxygen
 - Slow treatment
 - Produces methane, hydrogen sulfide gas
- Rely on soil to do the treatment

Why Use ATU's or Media Filters?

- Aerobic environment
 - Aerobic microbes break down waste
 - Faster than anaerobic treatment
- Environmentally sensitive areas
- Soils that are not acceptable for septic tank effluent
 - Hydraulically slow
 - Inadequate vertical separation

Why Use ATU's or Media Filters?

- Systems with large flows or small lots

 To mitigate impact of subsurface dispersal
 Allow a higher application rate to soils
- As a means of meeting secondary treatment levels or TN reduction

Effluent Quality Before and After		
Constituent	Septic tank	Treatment
BOD (mg/L)	140-220	5-50
TSS (mg/L)	50-100	5-50
TKN	40-100	5-25
Total P (mg/L)	5-15	4-10
Fecal col/100ml	1 million to 100 million	1,000 — 100,000
eople Caring About Water		Nowr

P

National Onsite Wastewater Recycling Association

Influent Quality to Devices

- Almost always requires primary settling/treatment
 - Minimize non-degradable solids entering ATU
- Systems are more sensitive than septic tanks
- Loss of microbes will disrupt performance
 - Strong sanitizers can be harmful (Quats)
 - Medications (antibiotics, chemotherapy drugs) can kill-off bugs

Environmental Effects

- pH
 - Microbes will adapt consistent pH
 - Sudden change in pH will likely cause a population loss or shift
 - Temperature
 - Units will operate at soil temperature
 - Cool temperatures slow degradation
 - Warm temperature faster degradation

Hydraulic and Organic Loading

- Two main design parameters
 - Hydraulic Loading
 - Rate that water will pass through the device
 - Must provide sufficient retention/treatment time
 - Operating consistently at peak flows will cause treatment issues
 - Organic Loading
 - Organic matter is food for microbes
 - More food than microbes poor quality effluent
 - More microbes than food high quality effluent

What About N & P?

- Some can be used for N removal or were specifically designed for N removal
 - Single pass converts ammonium to nitrate
 - Recycle for Nitrate removal
- Not used for phosphorus removal
 - P will be released from organic form
 - Some P is removed in biomass
- Additional unit processes must be added for P removal or to improve N removal

Require Maintenance

- Biomass removal from treatment areas
 - May be needed every 6 to 9 months or longer, depending on organic load, the sludge storage area size or amount of media, and the type of treatment system
 - ATU's require some "seed" to be left in them
 - Keep media wet in attached growth systems
 - Clean or rake media in filters

Require Maintenance

- Aeration system maintenance
 Blowers and motors need serviced
- Service contract
- Long-term costs
 - Energy
 - Inspection
 - Maintenance

People Caring About Water

Aerobic Treatment Units

ATU -Description

- Consists of a water tight structure with air being introduced mechanically to facilitate treatment.
- Wastewater goes through a settling area and usually enters the aeration area by gravity.
- The aeration area is a liquid (saturated) environment with Dissolved Oxygen levels >2 mg/L and completely mixed
- Some configurations are good for high strength wastewater

Layout

- ATU positioned after septic tank or trash tank
 - Reduces amount of solids entering ATU
 - Provides some flow attenuation

ATUs: Miniature WWTP

- Biological processes are well understood
- Mix microbes, wastewater, and dissolved oxygen
- Some sort of clarification is needed

Aeration and Mixing

- Aeration system
 facilitates mixing
 - Displacement of water as air is introduced causes turbulence

ATU Aeration Method

Diffusion

 Air is pushed into the system through small orifices in a diffuser of some sort

ATU Aeration Method

 Mechanical – aspirator
 Motor turns the mixer and draws air in and down the shaft

ATU Aeration Method

Air-lift pump

 Air is put into a pipe that opens up inside another pipe and draws wastewater up as it aerates it

Recycling Association

Oxygen Transfer into Solution

- Fine Bubble vs. Course Bubble Diffusion
 - Oxygen transfer takes place across interface between air and water
 - Fine bubbles have more surface area than course bubbles
 - Depends on the application

Air Supply Operation

- Continuous
- Timed

Venting

- Air entering system
 Air must exit somewhere
 - Unit
 - House vent
 - Biofilter

Microorganism Growth Methods

- Suspended growth
 - Microorganisms free float and move in mixed liquor
- Fixed/attached growth
 - Microorganisms are attached to a fixed or moving media

Suspended Growth Reactors

- Activated sludge process
- Biomass is thoroughly mixed with nutrients
 and biodegradable compounds
- Organisms flocculate and form active mass of microbes - biological floc
- Food mixes with microbes

Suspended Growth

Fixed/Attached Growth Reactors

- Fixed-film process
- Inert medium submerged in aeration chamber
- Effluent circulated through media passed the attached microbes
- Organic compounds assimilated by biological film
- Food and oxygen brought to microbes

Fixed/Attached Growth

Moving Bed Bioreactors

- Attached growth media are put into the aeration chamber and are moved around in a tank via the aeration method
- Bacteria attach to media

Adaptive Mechanical Aerator

- Add aeration to septic tank
 - Preferably to second compartment
 - Outlet end of a single compartment tank
 - Typically used for remediation

These AMA units add air continuously to septic tank. Periodically add enzyme/bacteria

Reduces BOD and TSS of septic tank effluent

These AMA units add air only and no enzyme/bacteria

Nibbler CBP Residential Unit

Bio-Microbics RetroFAST

Flow Equalization

- Equalization tanks (before ATU) can buffer flow = Timed dosing
 - Dose the ATU during low flows
 - Store excess wastewater during high flows
 - Can improve performance

Membrane Bio-Reactors (MBR)

Membranes: What They Are

- Membrane are thin barriers or films of material that allow certain substances to pass
- Membranes that allow only some substrates to pass through them are called semi-permeable membranes
- Useful membranes can be made from polymers, ceramics, metals, or porous materials impregnated with liquid or gelatin-like substances
- Synthetic membranes are usually 100 to 500 microns thick

Immersed MBR

Membrane submerged directly in aeration process, outside to inside flow under vacuum

Commercialized 1990's

Immersed Membrane MBR

Reduced the footprint, energy consumption and operational costs

Types of Immersed Membranes

Hollow Fiber

Flat Sheet

Spiral Wound

Membrane Effluent

MBR Maintenance

- More involved than other technologies
- Flow and loading also becomes extremely important because you cannot by pass the Membrane material
- Requires periodic cleaning of the membrane surface through back flushing or soaking

People Caring About Water

Example of ATU's

Norweco Singulair System

Clearstream System

HOOT

- 1. Pretreatment tank where influent enters.
- Aeration chamber where oxygen is pumped into the waste water.
- 3. Clarifier chamber where the clear, odorless effluent rises.
- Chlorinator the clear effluent passes through for disinfection.*
- 5. Holding tank for disinfected* effluent ready for discharge.
- 6. Extremely quiet, efficient aerator and pump.
- 7. Unique solid-state HOOT Control Center monitors and controls the system.

FAST System

Jet BAT System

People Caring Auven

Delta Ecopod System

Zoeller Fusion System

High Strength Wastewater

- Separate high strength wastes from domestic wastewater or
- Treat all the wastewater together

Nibbler designed to handle high strength wastes

Bio-Microbics HighStrength FAST -designed to handle high strength wastes

Delta Ecopod C - designed to handle high strength wastes

