

Innovative Environmental Technologies, Inc.

"Comparative Study for ZVI/Peroxide vs Ferric Iron Oxide Persulfate Activation Followed by Intrinsic Facultative, Biologically Mediated Processes"

> Antonis Karachalios PhD, Manager of Technology Assessment – Environmental Engineer Innovative Environmental Technologies, Inc. Pipersville, PA 18947 888-721-8283 www.iet-inc.net

Overview of ISCO Technologies

- Introduction
- Oxidizing agents
- General chemistries of reactions

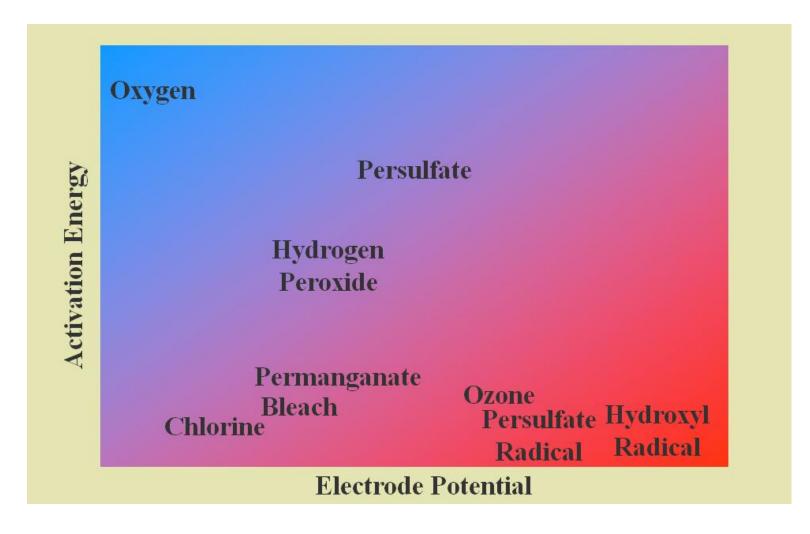
Use of Persulfate for ISCO Treatment

- Traditional Persulfate Activation Methods
- Limitations of convectional activation technologies

ISCO/Enhanced Bioremediation

- ZVI/Peroxide Persulfate Activation
- Ferric Iron Oxide Persulfate Activation
- Biological Attenuation Process

Cases Studies



- > ISCO involves:
 - Injection of an oxidizing agent into the subsurface to destroy organic compounds
 - The by-products for complete mineralization include carbon dioxide (CO₂), water (H₂O) and oxygen (O₂)
- Goal is to mineralize or transform contaminants of concern (COCs)

Oxidant	Potential (V)	Form
Fenton's Reagent (OH·)	2.80	Liquid
Activated Persulfate (SO ₄ -)	2.60	Salt/Liquid
Ferrate (Fe ⁶⁺)	2.20	
Ozone (O ₃)	2.07	Gas
Persulfate (S ₂ O ₈ ²⁻)	2.01	Salt/Liquid
Hydrogen Peroxide (H ₂ O ₂)	1.78	Liquid
Permanganate (MnO ₄ -)	1.68	Salt (KMnO ₄) Liquid (NaMnO ₄)

Ozone (No Activator)

$- O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	E _o =2.07 V
 Hydroxyl Radical 	
• $O_3 + H_2 O \rightarrow O_2 + 2OH^2$	
• $2O_3 + 3H_2O_2 \rightarrow 4O_2 + 2OH^2 + 2H_2O$ • $2OH^2 + 2H^2 + 2e^2 \rightarrow 2H_2O$	E _o =2.76 V
Persulfate (Requires Activation)	
$- S_2 O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	E ₀ =2.01 V
$-S_2^2O_8^{2-} \rightarrow 2(SO_4^{-})^{-1}$	E _o =2.50 V
Hydrogen Peroxide (Requires Activation)	
$- H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	E _o =1.77 V
$- H_2O_2 \rightarrow 2OH^{\cdot}; 2OH^{\cdot} + 2H^{+} + 2e^{-} \rightarrow 2H_2O$	E _o =2.76 V
Permanganate (No Activator)	
$- MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	E _o =1.70 V
• K ⁺ , Na ⁺	

Accepted Oxidizing Techniques for Specific COCs

Oxidant	Amenable VOC's	Reluctant VOCs	Recalcitrant VOCs	Limitations
Peroxide, Old Fenton's	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA	DCA, CH ₂ Cl ₂	TCA, CT, CHCI $_3$	Stability (25-95% decomp/hr), low pH
Peroxide, New Fenton's	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA	DCA, CH ₂ Cl ₂ ,TCA, CT, CHCl3		Stability (10-50% decomp/hr)
Potassium Permanganate	PCE, TCE, DCE, VC, TEX, PAH	МТВЕ, ТВА	TCA, CT, B, CHCl ₃ , DCA, CB, CH ₂ Cl ₂	Soil oxidant demand
Sodium Permanganate	PCE, TCE, DCE, VC, TEX, PAH	MTBE, TBA	TCA, CT, B, CHCl ₃ , DCA, CB, CH ₂ Cl ₂	Soil oxidant demand
Sodium Persulfate, Fe	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA	DCA, CH ₂ Cl ₂ , CHCl ₃	ТСА, СТ	Stability (10-25% decomp/wk), low pH
Sodium Persulfate, Base	All VOCs			Stability (10-25% decomp/wk), NaOH costs
Sodium Persulfate, Heat	All VOCs			Stability (10-50% decomp/day), low pH, heating costs
Ozone	PCE, TCE, DCE, VC, CB, BTEX, PAHs, MTBE, TBA		DCA, CH ₂ Cl ₂ , CHCl ₃ , TCA, CT	Mass Delivery, Volatilization

Divalent Metal Activation

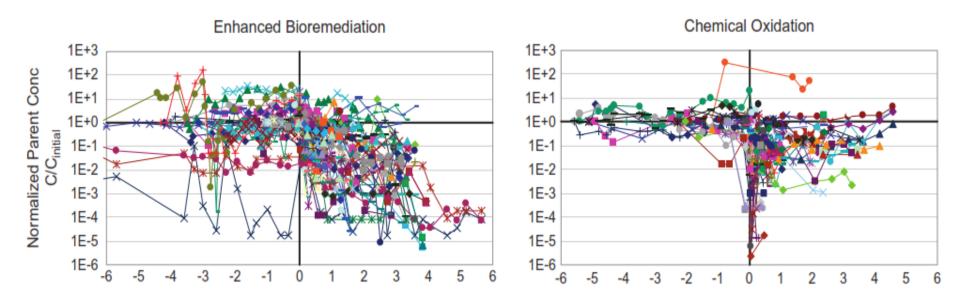
- Oxidant consumption during conversion of ferrous iron to ferric iron
- Inhibition of biological utilization of the generated ferric species (EDTA)
- ✤ High oxidant consumption due to overdosing of the ferrous chelated iron

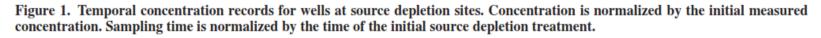
Caustic Activation

- Significant health and safety issues
- Unsuitably high (extreme) pH environment for biological attenuation
- Self-limiting biological attenuation process due to hydrogen sulfide generation

Heat Activation

- Difficult Implementation
- High Cost
- Elevated hydrogen sulfide production


Hydrogen Peroxide Activation


- Limited efficacy on many targeted compounds
- Elevated hydrogen sulfide production
- Produces heat and (excessive) gassing which can lead to surfacing issues

The ISCO reactions are short lived

- Ozone (minutes to hours) Fenton's (hours to days) Persulfate (days to weeks) Permanganate (months).
- The ISCO process can enhance COC desorption
- Lack of secondary treatment mechanism mandates subsequent treatments

Iron catalyzed peroxide oxidation (Fenton reactions) utilize iron to catalyze the decomposition of hydrogen peroxide, producing OH radicals

$$H_2O_2 + Fe^0 --> Fe^{3+} + OH^- + OH^-$$
$$Fe^{+3} + H_2O_2 \rightarrow Fe^{+2} + H^+ HO_2 \bullet$$

- Advantage of the evolution of free radicals
 - Offer higher oxidation capabilities
 - Broader spectrum of applicable targeted compounds
- In addition to the reactions occurring between the oxidant and the organics present, radical-propagating reactions also occur involving the excess H₂O₂
- > More radicals are available to react with the contaminants

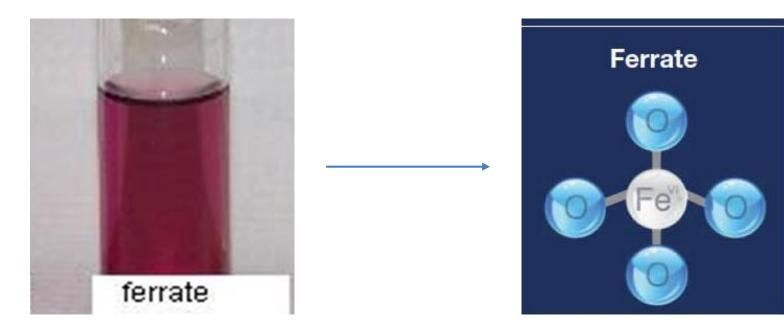
> The persulfate anion $(S_2O_8^{2-})$ has a high redox potential and can be chemically activated to form the sulfate radical $(SO_4^{2-}\bullet)$

$$S_2 O_8^{2-} --> 2 S O_4^{2-}$$

Persulfate oxidation commonly uses sodium persulfate, to produce sulfate radicals that attack most petroleum hydrocarbons

$$S_2O_8^{2-} + Fe^0 --> Fe^{3+} + 2SO_4^{2-}$$

- Persulfate activation with iron requires a lower activation energy than thermal activation, making iron activated persulfate a more efficient and rapid way of degrading contaminants
- The generated sulfate ion from the decomposition of the persulfate acts as a terminal electron acceptor for sulfate reducers


- Persulfate is activated by Fe(III) requiring lower activation energy than alternative mechanisms
- No consumption of persulfate oxidant
- Elevation of iron oxidation state to a supercharged iron ion, ferrate species (Fe⁶⁺) which can itself acts as an oxidant
- The supercharged iron cation consumption results into ferric species that act as a terminal electron acceptor for biological attenuation

Sodium Persulfate + Ferric Oxide (Fe₂O₃)

- Chemical Oxidation via Sulfate (SO₄•) Radical
- Chemical Oxidation via Ferrate (Fe^{6+•}) Radical

2 Fe³⁺ + 3 OCl⁻ + 4 OH⁻
$$\rightarrow$$
 2 FeO₄²⁻ + 3 Cl⁻ + 2 H₂O
S₂O₈²⁻ + ACTIVATOR [Fe³⁺] \rightarrow SO₄⁻• + e⁻ \rightarrow SO₄²⁻•
S₂O₈²⁻ + Fe³⁺ -----> Fe^(4+ to 6+) + SO₄²⁻ + SO₄²⁻•

- Ferric iron used as electron acceptor during anaerobic biodegradation of contaminants
- Stoichiometrically, the degradation of 1.0 mg/L of BTEX results in the average consumption of approximately 22 mg/L of ferric iron

$$C_6H_6 + 18 H_2O + 30 Fe^{3+} ----> 6 HCO_3^- + 30 Fe^{2+} + 36 H^+$$

 $C_7H_8 + 21 H_2O + 36 Fe^{3+} ----> 7 HCO_3^- + 36 Fe^{2+} + 43 H^+$
 $C_8H_{10} + 24 H_2O + 42 Fe^{3+} ----> 8 HCO_3^- + 42 Fe^{2+} + 50 H^+$

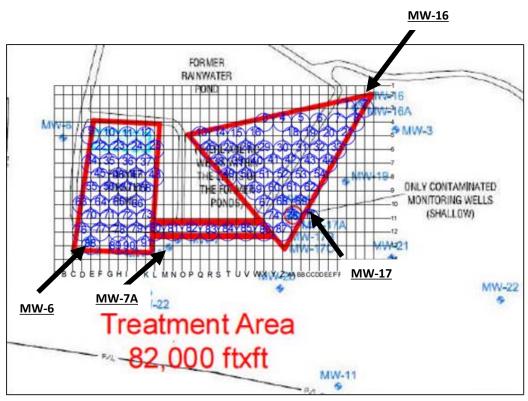
- > Ferric iron is reduced to Ferrous iron, which is soluble in water
- Ferrous iron is oxidized to Ferric iron and the iron cycling provides sustained secondary bioremediation via one electron transfer reactions (Weber *et al*, 2006)

Sulfate Reduction

- After dissolved oxygen depletion sulfate is used as an electron acceptor for anaerobic biodegradation by indigenous microbes (sulfidogenesis)
- Stoichiometrically, 1.0 mg/L of sulfate consumed by microbes results in the destruction of approximately 0.21 mg/L of BTEX compounds
- Sulfate acts as an electron acceptor in co-metabolic processes during bioremediation of petroleum products
- Basic reactions for the mineralization of benzene and toluene under sulfate reducing conditions:

 $C_6H_6 + 3.75 SO_4^{2-} + 3 H_2O --> 0.37 H^+ + 6 HCO_3^- + 1.87 HS^- + 1.88 H_2S^ C_7H_8 + 4.5 SO_4^{2-} + 3 H_2O --> 0.25 H^+ + 7 HCO_3^- + 2.25 HS^- + 2.25 H_2S^-$

Pyrite Formation


- Sulfate residual is utilized as terminal electron acceptor by facultative organisms thereby generating sulfide
- The ferrous iron and the sulfide promote the formation of pyrite as a remedial byproduct
- This reaction combats the toxic effects of sulfide and hydrogen sulfide accumulation on the facultative bacteria
- Provides a means of removing targeted organic and inorganic COIs via precipitation reactions
- Pyrite possesses a high number of reactive sites that are directly proportional to both its reductive capacity and the rate of decay for the target organics

- Single injection event at a wood treating facility in Midwestern United States in July 2013 to remediate soils and groundwater impacted by the historical release of heavy ended petroleum compounds.
- Total treatment area of approximately 82,000 square feet, treating between 13 and 22 feet below ground surface.

- Spaced 34 ft apart
- 22,022 lbs of Ferric Iron and Persulfate Mixture

IET INJECTION SYSTEM UNITED STATES PATENT 7,044,152

Injection Trailers Include: Multiple Liquid Feed Systems, Stainless Steel Piping, Isolated Compressed Gas Containment, Safety Shower, Eyewash Station, Onboard Generator, Chemical Resistant Construction, Mobile Office Space

Table 1. VOC Data for MW-6 (μ g/L).

MW-6						
Sampling Date 07/2013 10/2013 01/2014 04/2014						
Benzo(a)pyrene	17,000	ND	ND	ND		

ND: Not Detected

Table 2. VOC Data for MW-7A (µg/L).

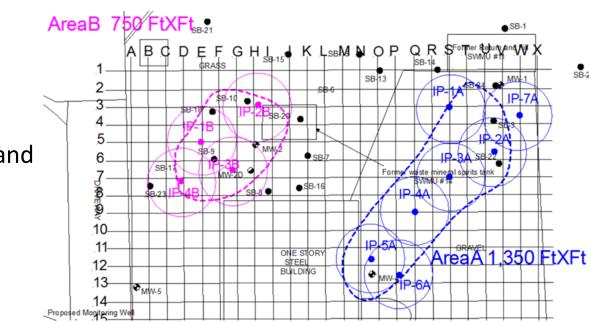
MW-7A						
Sampling Date 07/2013 10/2013 01/2014 04/201						
Benzo(a)pyrene	18,000	ND	ND	ND		

ND: Not Detected

Table 3. VOC Data for MW-16 (µg/L).

MW-16						
Sampling Date 07/2013 10/2013 01/2014 04/2014						
Benzo(a)pyrene	20,000	ND	ND	ND		

ND: Not Detected

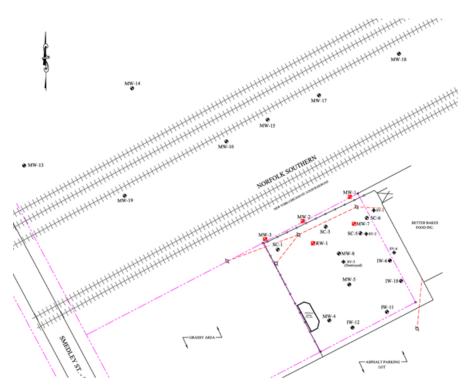

Table 4. VOC Data for MW-17 (µg/L).

MW-17						
Sampling Date 07/2013 10/2013 01/2014 04/201						
Benzo(a)pyrene	19,000	ND	ND	ND		

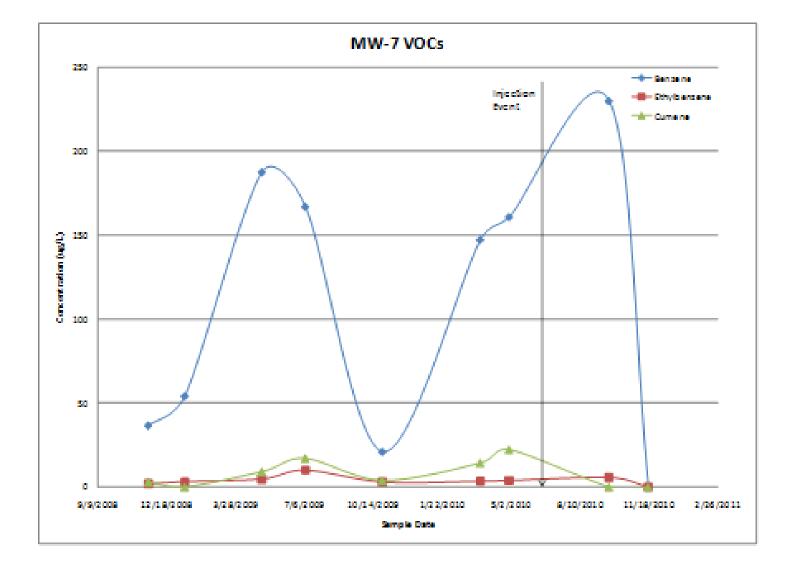
ND: Not Detected

- Single injection event implemented at a former gas station in Raleigh, North Carolina in September 2012 to remediate soils and groundwater impacted by the historical release of BTEX compounds.
- Total treatment area of approximately 2,100 square feet, treating between 12 and 27 feet below ground surface.
- 11 injection points
 - Spaced 15-20 ft apart
 - 3,750 lbs of Ferric Iron and Persulfate Mixture

Ferric Iron Oxide Persulfate Activation - Case Study 2

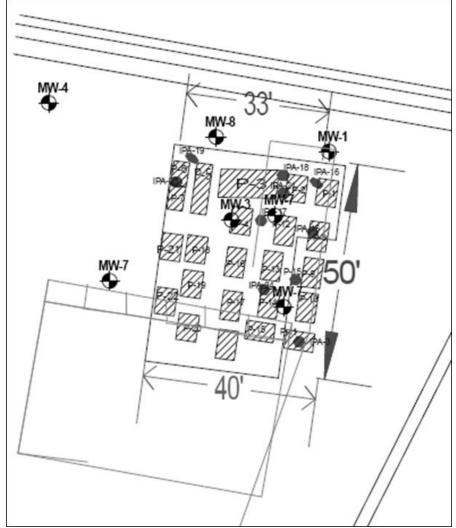

	MW-1		
Sampling Date	09/12/2012	03/20/2013	10/02/2013
Benzene	0.3J	ND	ND
Chlorobenzene	1.0	ND	ND
1,2-Dichlorobenzene	18	2.0	ND
1,3-Dichlorobenzene	2.7	1.0	ND
1,4-Dichlorobenzene	9.9	5.4	3.2
Ethylbenzene	2.5	ND	ND
Isopropylbenzene	12	ND	ND
Naphthalene	6.6	ND	ND
Toluene	0.8J	ND	ND
Xylene (Total)	82	3.8	0.9

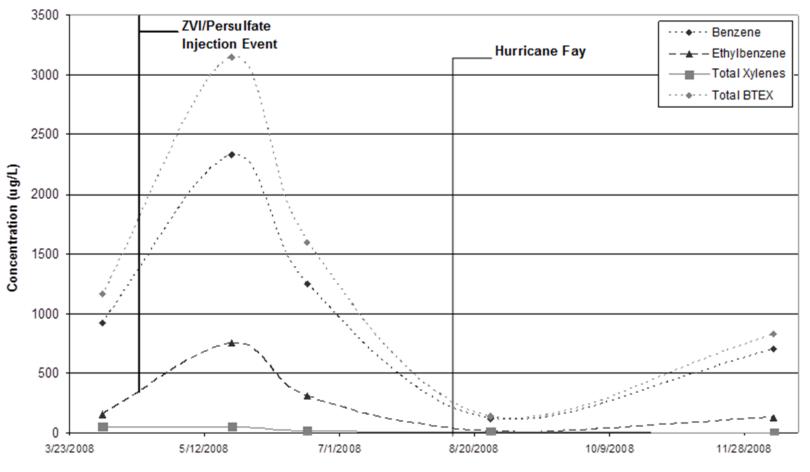
	MW-4							
Sampling Date	09/12/2012	03/20/2013	10/02/2013					
Benzene	13	ND	ND					
Chlorobenzene	13	ND	ND					
1,2-Dichlorobenzene	18	ND	ND					
1,3-Dichlorobenzene	0.8J	ND	ND					
1,4-Dichlorobenzene	3.6	ND	ND					
Ethylbenzene	ND	ND	ND					
Isopropylbenzene	4.2J	ND	ND					
Naphthalene	8.4	ND	ND					
Toluene	ND	ND	ND					
Xylene (Total)	16	ND	ND					



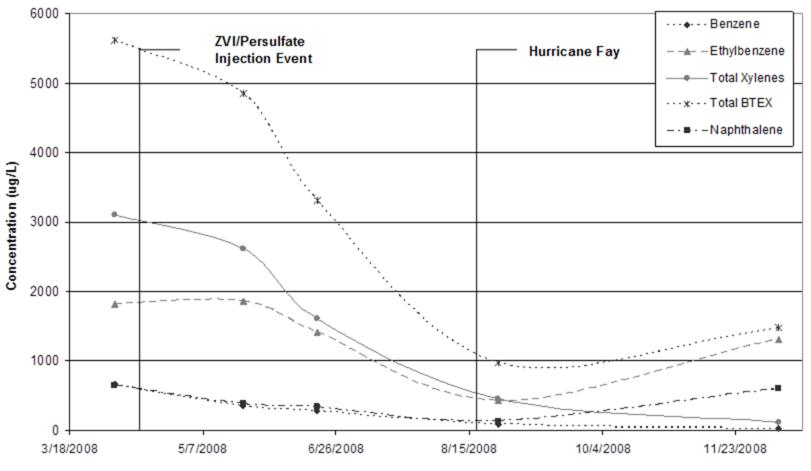
- Single injection event implemented at a former gas station in Northwestern, Pennsylvania in June 2010 to remediate soils and groundwater impacted by the historical release of BTEX compounds.
- Total treatment area of approximately 10,775 square feet, treating between 8 and 17 feet below ground surface.

- > 70 injection points
- Spaced 15-20 ft apart
- 15,500 lbs of Ferric Iron and Persulfate Mixture

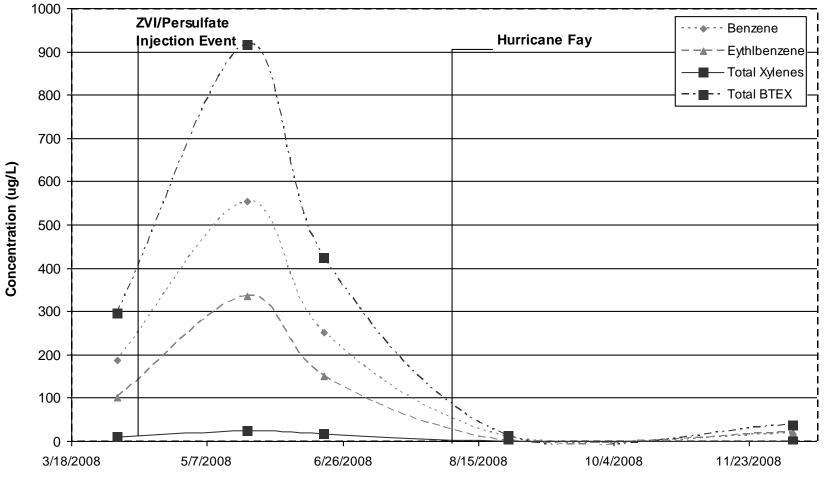




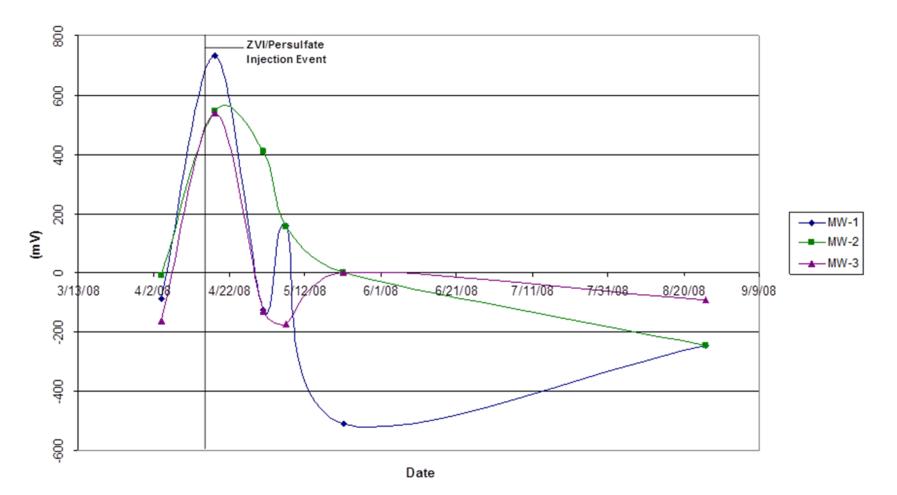
Single injection event at a wood treating facility in site in St. Augustine, Florida


COC Concentrations (MW-1)

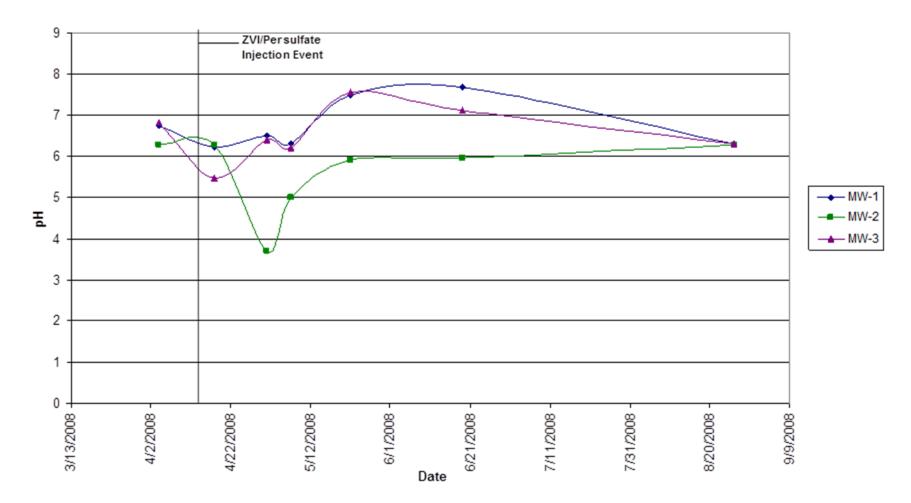
Sampling Date



COC Concentrations (MW-2)


COC Concentrations (MW-3)

Sampling Date



Oxidation Reduction Potential (ORP) for Monitoring Wells 1,2 and 3

pH for Monitoring Wells 1,2, and3

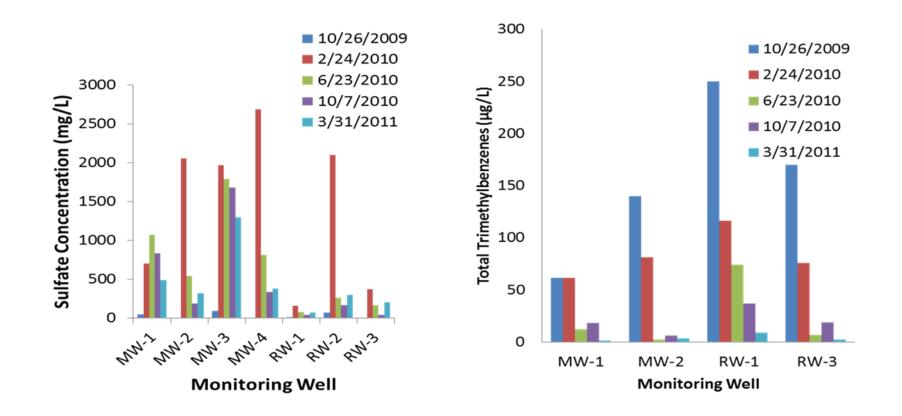
- In situ chemical oxidation remedial event at a former gas station in Clinton, NY, from October 27 to October 29, 2009
- Targeted BTEX compounds while promoting biological mineralization.
- Total treatment area of 9,225 square foot area, treating between 9 and 15 feet below ground surface.

			MW-1			
Field Parameter	10/26/2009	12/28/2009	02/24/2010	06/23/2010	10/07/2010	03/31/2011
рН	6.70	5.28	7.57	6.92	6.81	6.86
ORP (mV)	-67	+339	-142	-151	-100	-88
DO (mg/L)	0	0.24	0	0	0	0

			MW-2			
Field Parameter	10/26/2009	12/28/2009	02/24/2010	06/23/2010	10/07/2010	03/31/2011
рН	6.92	5.44	7.58	6.75	6.62	6.77
ORP (mV)	-140	+286	-127	-153	-91	-81
DO (mg/L)	0	0.12	0	0	0	0

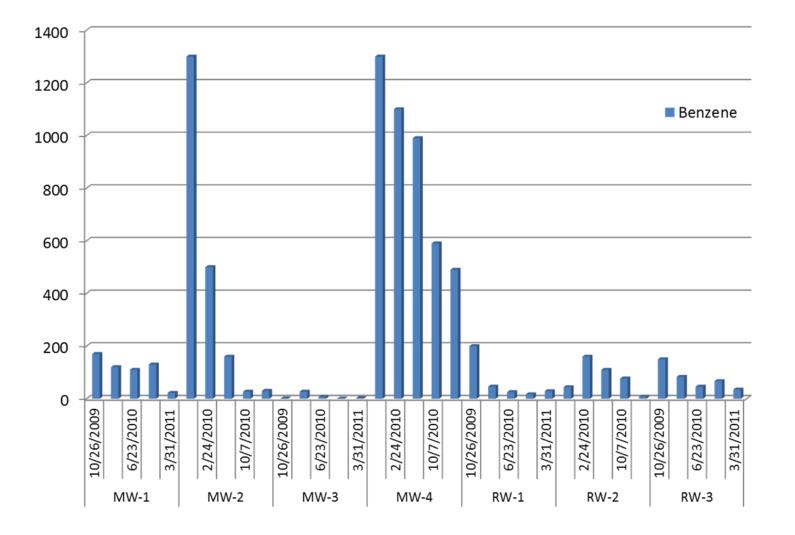
			MW-4			
Field Parameter	10/26/2009	12/28/2009	02/24/2010	06/23/2010	10/07/2010	03/31/2011
рН	7.05	5.56	7.54	6.85	6.67	6.94
ORP (mV)	-143	+277	-122	-145	-106	-102
DO (mg/L)	1.54	3.36	1.79	1.84	0.11	0

RW-1									
Field Parameter	10/26/2009	12/28/2009	02/24/2010	06/23/2010	10/07/2010	03/31/2011			
рН	7.13	5.69	7.75	6.96	6.81	7.01			
ORP (mV)	-160	+253	-139	-147	-104	-92			
DO (mg/L)	0	0.09	0	0	0	0			


> Four monitoring wells are located in the vicinity of the injection area:

✤ <u>MW-1 & MW-2 & MW-4 & PW-1</u>

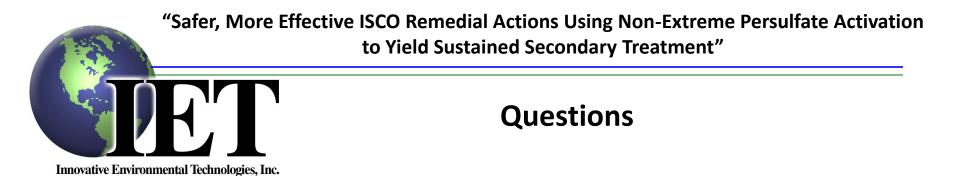
- ✓ Geochemical parameters ideal for biological attenuation
- \checkmark Iron present in the ferrous state
- ✓ Sulfate concentrations elevated
- ✓ pH remains neutral
- ✓ Redox Potential is negative



ZVI/Peroxide Persulfate Activation - Case Study 2

ZVI/Peroxide Persulfate Activation - Case Study 2

- Single injection event implemented at a former gas station in Herkimer, New York in April 2017 to remediate soils and groundwater impacted by the historical release of BTEX compounds.
- Total treatment area of approximately 19,515 square feet, treating between 10 and 18 feet below ground surface.


- > 56 injection points
- Spaced 20 ft apart

MW2017-2								
Sampling Date	06/29/2017	08/30/2017	11/09/2017	04/24/2018				
Water Level (ft)	9.66	16.89	9.39	8.70				
рН	6.62	6.02	7.22	6.81				
ORP (mV)	-28.7	-68.0	-35.7	-32.7				
D.O. (mg/L)	0.26	7.54	4.16	4.76				
Conductivity (mS/cm)	4.574	3.330	2.260	1.098				
Turbidity (NTU)	799	NA	370	53.4				
Temperature (oC)	15.92	20.97	16.50	9.96				
Total Iron (μg/L)	NA	84,600	51,400	57,700				
Dissolved Iron (µg/L)	NA	2,500	347 J	200				
Sulfate (µg/L)	NA	1,600,000	740,000	270,000				

MW2017-2								
Sampling Date	06/29/2017	08/30/2017	11/09/2017	04/24/2018				
Benzene	10 J	8.0 J	ND	0.32 J				
Toluene	20 J	ND	ND	ND				
Ethylbenzene	440	350	100	9.2				
Total Xylenes	22 J	ND	ND	ND				
Isopropylbenzene	180	200	67.0	11.0				
n-Propylbenzene	530	660	220	40.0				
1,2,4-Trimethylbenzene	3,000	3,800	1,200	120				
Acetone	86 J	ND	ND	ND				

