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Why geophysics?

• Prior to expensive and invasive surgery we utilize medical imaging.

• Each medical imaging method is used for specific purposes.
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• Prior to expensive earth intrusive investigations (e.g., drilling, excavating, 

etc.) we can utilize geophysical imaging.

• Each geophysical method is used for specific purposes

x-ray of knee MRI of knee

Landfill plume mapping Abandoned well mapping

images credit: Lee Slater



Outline

1. Finding Underground Storage Tanks (USTs) 

and underground infrastructure

2. Mapping contaminant plumes

3. Monitoring active or passive remediation

4. High resolution characterization and Conceptual 

Site Model (CSM) development

5. Online resources – under development

•Online Environmental Geophysics Textbook

•Decision Support Tools
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Geophysical methods include a set of tools 

in the site investigator’s tool box.  



Geometrics G-858 Cesium vapor magnetometer

• What are the physical properties of the target, 
i.e. UST and associated infrastructure?
➢ metal?, ferrous metal?  fiberglass?

• Any potential interference?

1. Finding USTs & subsurface infrastructure

Likely applicable geophysical methods:
1. Magnetic 
2. Electromagnetic
3. Ground Penetrating Radar (GPR)

Geonics EM-61
Mala GPR system
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1. Finding USTs & subsurface infrastructure

Total Magnetic
Field Intensity (nT)



1. Finding USTs & subsurface infrastructure

EM 31 Quadrature

Geonics EM-31



1. Finding USTs & subsurface infrastructure

Ground Penetration Radar (GPR) UST and utility examples

Note: Hyperbolic Reflections

500 MHz antenna

• pipes oriented perpendicular 
to the profile.  

• Darker reflections show 
higher amplitude due to 
greater electrical property 
impedance.  

• Faint reflections show muted 
or low amplitude reflections 
due to the attenuation of the 
GPR energy from electrically 
conductive material.

400 MHz antenna

telephone
cable

2 steel
pipes

steel
pipe

PVC
pipe

A)

B)

GSSI antenna

GPR sections from Bill Sauck



Archie's  Law  for Porous Media w/o clay

re = a f-m S-n rw

re = resistivity of the earth

f = fractional pore volume (porosity) 

S = fraction of the pores containing fluid 

rw = the resistivity of the fluid

n, a and m are empirical constants

Direct Current (DC) Resistivity

2. Mapping contaminant plumes

Current flow
lines

Lines of
equal potential

Measured
potentialCurrent

source v

Resistivity Surveying
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saltwater-saturated sands

Approximate 
location of ~0.3 m 
thick oil layer

SENW Offshore

Zone of immature oil contamination 
imaged as resistive layer

thinning of oil layer?Inland
Oil layer

Oil impact thins away from 
the shoreline

Oil 

layer

Heenan, J., Slater, L.D., Ntarlagiannis, D., Atekwana, E.A., Fathepure, B.Z., Dalvai, S., Ross, C., Werkema, D.D., and 
Atekwana, E.A., Geophysics, 2014 

2. Mapping contaminant plumes
Deep Water Horizon Oil Spill Barrier Island Impact

DC Resistivity Results



DWH Barrier Island Time-Lapse
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Heenan, J., Slater, L.D., Ntarlagiannis, D., Atekwana, E.A., Fathepure, B.Z., Dalvai, S., Ross, C., Werkema, D.D., and Atekwana, E.A., Geophysics, 2014 

Adaptation of field resistivity system to remote solar power 
acquisition

15 months resistivity
ave. resistance of anomaly vs. time

2. Mapping contaminant plumes
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Monitoring or measuring passive or 

active remediation using geophysics

3. Remediation monitoring

Maturity of plume should be considered

zone of hydrocarbon impact

Controlled Kerosene Spill

However…
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Geophysical response is coincident with microbiology and geochemical changes

Werkema Jr., D.D., Atekwana. E.A., Endres, A., Sauck, W.A. and Cassidy. D.P., Geophysical Research Letters, 2003 

16S rRNA gene community composition
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3. Remediation monitoring
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Soil Vapor Extraction (SVE) monitoring using Self-Potential (SP)

Vukenkeng C.A., Atekwana Estella.A., Atekwana, Eliot, A., Sauck, W.A., Werkema Jr., D.D., Geophysics, vol. 74, 2009 
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Former fire training facility, Oscoda, Michigan  

Large quantities of fuel were burned. 

1990s, the free product 0.3 m thick and > 200 m down gradient

3. Remediation monitoring



1996

2003

2007

DC Resistivity response to SVE system
GPR Response 

to SVE System

Vukenkeng C.A., Atekwana Estella.A., Atekwana, Eliot, A., Sauck, W.A., Werkema Jr., D.D., Geophysics, vol. 74, 2009 

3. Remediation monitoring
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Magnetic Susceptibility (MS)

Atekwana, Mewafy, Abdel Aal, Werkema, Revil, and Slater, Journal of Geophysical Research, 2014

MS measurements of the 

accumulation of magnetite 
can be adopted as a non-
invasive technology for 

monitoring long-term 
natural attenuation of 

crude oil in the subsurface

C1010

C1006

North Pool

South Pool

Rupture

534

310

3. Remediation monitoring
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4. High Resolution CSM development

Groundhog burrow 

GPR image depicting 

the entrance shaft, 

tunnel, ramp, and 

chamber imaged with 

the 400 MHz antenna 

and the 900 MHz 

antenna.  

Sherrod, L., Sauck, W., Simpson, E., Werkema, D., Swiontek, J., Case histories of GPR for animal burrows mapping and geometry, Journal 
of Environmental and Engineering Geophysics, In press, 2018
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the identification of the 

groundhog burrow system 

through hyperbolic 

reflections in the 400 MHz 

data.

GPR detection and mapping of animal burrows



Environmental 
Geophysics web 

presence: tech transfer, 
assistance, guidance, and 

decision support tools

17

ONLINE RESOURCES

Once finalized this will be found at:

www.epa.gov/environmental-geophysics

Beta version:  https://clu-in.org/characterization/technologies/geophysics/

5. Models & Decision Support

https://clu-in.org/characterization/technologies/geophysics/
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5. Models & Decision Support ONLINE RESOURCES



https://clu-in.org/characterization/technologies/geophysics/ Werkema Jr., D.D., Jackson, M., and Glaser, D., EPA/600/C-10/004, 2010 

Geophysical Decision Support System (GDSS – Beta Version)

5. Models & Decision Support ONLINE RESOURCES

https://clu-in.org/characterization/technologies/geophysics/


SEER – Scenario Evaluator for Electrical Resistivity

(a) hypothetic target consisting of a mature LNAPL 

plume on the water table, and electrodes with 1-m 

spacing at land surface

(b) the resultant electrical resistivity tomogram, 

assuming normally distributed random standard 

errors of 3%. 

Terry, N., Day-Lewis, F., Robinson, J., Slater, L., Halford, K., Binley, A., Lane Jr., J., Werkema, D., 2017

5. Models & Decision Support ONLINE RESOURCES



21

Concluding Thoughts

We can use, and are learning to use, geophysics to:

1. Find Underground Storage Tanks
2. Direct detection of some contaminants
3. Biological breakdown of contaminants and remediation
4. CSM development
5. Forward models and decision support systems help reduce uncertainty of 

results and inform stakeholders

The geophysical response is a function of the geology, hydrogeology, biology, and 
chemistry of the subsurface.  

➢ Look for physical property contrasts, understand the mechanism of that 
contrast and if geophysical methods have the requisite resolution to detect the 
contrast.

What are the physical property contrasts?

Are these contrasts geophysically detectable? 

Mass removal (e.g., SVE)

Biodegradation

Initiation of 

contamination

peak conductivity
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