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Definitions and Cautionary Note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used
for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and
subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. “Subsidiaries”, “Shell subsidiaries” and
“Shell companies” as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has
joint control are generally referred to as “joint ventures” and “joint operations”, respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as
“associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all

third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and
businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future
expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to
differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to
market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms
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and phrases such as “aim”, “ambition’, “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”,
“should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from
those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s
products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated
with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and
countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in
various countries and regions; (I) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of
projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend
payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not
place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’'s 20-F for the year ended December 31, 2017 (available at
www.shell.com/investor and www.sec.gov ). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each
forward-looking statement speaks only as of the date of this presentation, June 19, 2018. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise
any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the
forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC.
U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
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The Challenge




Lots of Open UST Cases Remain
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KEY POINT

Still over 65,000
Underground
Storage Tank
(UST) sites need
closure; must
understand:

“WHAT WORKS...
WHAT DOESN’T”
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Active Remediation Systems Rarely Optimized

. hydraulic 50|t| vofpor air
excavation recovery exirachion Spqrging fherm0|
~ ) o - END POINT
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N 5 — 3He > 2 REGULATORY
B i S CRITERIA
groundwater == (CLEAN-UP LEVELS)
IMPACTED SITE FREE-PRODUCT MASS REDUCTION MASS REDUCTION
REMOVAL (CONVENTIONAL) (ENHANCED)
(max. extent practicable)
10 Ibs/day! / @ bioremediation @
NATURAL ll: \
ATTENUATION (NA)
KEY POINT (TOTAL VS. COPCs) /
enhance?

» optimal use of active remediation
requires fundamental knowledge of: meet

_ baseline (NA rates) criteria®
- remedial objectives (bulk vs. COPCs)
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Technology Selection vs. Remedial Objectives
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Redudion in LNAPL

ASSUMPTIONS: from ITRC, 2009
groundwater flows from left to right

plug flow through the source
equmb”um dlSSOlUtIOI’l September 2018
no biodegradation

Relative Time

KEY POINT

= different methods of
remediation will affect
concentrations and
plume longevity
differently




Big Data -

Geotracker (California)

From McHugh et al., 2013

KEY POINT

==f==Henzene
== Ethylbenzene
==MTBE

e TBA
=#=—Toluene

== Xylene
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attenuation rates (active

vS. natural) are site-

ACTIVE

" REMEDIATION

MONITORED
NATURAL

ATTENUATION

specific — must evaluate

lots of data to

understand “what

works, what doesn’t”

1 L
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Effect of LNAPL Recovery on Groundwater
Concentration
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KEY POINT

1000 LNAPL recovery did not

have a significant effect
on reducing benzene
concentrations in
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Effects of Hydraulic Recovery on LNAPL Source

Mass
Before Hydraulic Recovery of LNAPL After Hydraulic Recovery of LNAPL
MW | MW
Potential source for gw ey P OteNtial source for gw
and/or vapor impacts and/or vapor impacts
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N
Q)
3
= Q
0O LNAPL saturation 100 O LNAPL saturation 100
(% of pores filled with LNAPL) (% of pores filled with LNAPL) §
g

= significant source mass will remain in place after hydraulic

recovery (source for groundwater and vapor impacts)
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Effect of LNAPL Recovery at Sites with Mobile LNAPL
Over 10 Years

‘
g ‘ Median
s _ Median Source Attenuation Median Concentration Reductionin
SE \ 1 Slope = Remedy Rates (yr-) Reduction (%) LNAPL
- g | ksource Type Thickness (%)
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2 g L o Benzene Benzene
< >
Time Slower Lower
LNAPL
" ) Recovery 0.09 75% 87%
C = CO € \"source (n=327)
“EPA  Ground Water Issue
- galculationfanﬁ‘Use ofgilr\lst-OrdIel;Rate Non = NAPL
onstants for Monitored Natural Attenuation
S Recovery 0.19 86% 91%
A ot . S, Jobn . Wileor? ohn . Comnr' (n=444) Faster Higher
Newell et al. (2002) Kulkarni et al., 2015

= LNAPL recovery may have little impact on reducing

concentrations or thickness, or increasing source
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v osve B BENZENE

Effect of Remediation | .- - —
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Copyright of Shell International




Efforts to Address the Challenge

NSZD




NSZD - Conceptual Model

B NSZD is critical hydrocarbon
mass-loss pathway:

B 70% of hydrocarbon can
directly outgas to vadose
zone (Ng et. al., 2015)

” B rates consistent w/ some
adose . .
Zone engineered remediation
(700 — 4,000 gal/acre-yr:
Garg et al., 2017)

Hydrocarbon
Oxidation
Zone

Hydrocarbon Impacts B NSZD method/tools well

: established (ITRC, 2009)
Mobile LNAPL

______ H primary applications (to date)

Dissolved B shut-down of active LNAPL

Groundwater Plume recovery systems
Flow

modified from API (2017)
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Various NSZD Measurement Techniques

O, Trap
SOIL-GAS PROBE NEST
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KEY. = several methods, each with advantages and limitations
» NSZD methods focus on bulk (total) TPH attenuation

POINT
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NSZD Rate vs. Composition CEY POINT

BEX: Benzene, | T: Toluene S: Short Chain | L: Long Chain N: Nnn—".-’nlal:ile_ B: Branched NSZD (TPH) rate
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Xylenes Carbon " .
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Between years 25-27 2\ 1.8% 0.6% 17% 73% 8.0% 0%
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Plume Longevity is Often of Interest in Risk-Based
Decision Making

data from 1130 California gasoline UST sites from 2001 to 2011
10,000
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Efforts to Address the Challenge

SOIL GAS COMPOSITION
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Objectives

B demonstrate soil-gas method to assess natural

attenuation (NSZD) rates for TPH & benzene
B evaluate factors that affect natural attenuation rates

Copyright of Shell International

SOIL-GAS SAMPLING
(summa canister)

SOIL-GAS PROBE NEST

4" O.D.
Teflon

tubing

——Sscreen

SAND
Il BENTONITE

September 2018 19



Empirical Soil-Gas Database

(https://www.epa.qov/ust/petroleum-vapor-intrusion-database)

{E}Canada B TPH and benzene
soil-gas data

B 82 samples; 35
sites; 55 probe
locations

B SOILS
28% sands
51% loams/silts
21% clays

B SURFACE COVER

» Additional 124 56% pavement

Australian sites 29% open ground

analyzed 15% buildings
separately
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Soil-Gas Method

SOIL
GAS
PROFILE

IZ (probe)A C, = measured
®

VADOSE
ZONE

k. (aerobic) = calibrated

I.Jk (z=L)=calibrated

_ CAPILLARY/SMEAR ZONE

LR,
\\&

ANAEROBIC

-
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B mass transport (1-D vertical): BioVapor -
http://www.api.org/

B simple (promote method uptake)

gas-phase diffusion dominated (Fick’s Law)
1st-order biodegradation kinetics (O, - limited)
TPH and benzene simulated

ND soil-gas concentrations = DL

best fit of predicted and measured soil-gas data —
(see ITRC PVI (2014) - Appendix 1)

http://www.itrcweb.org/PetroleumVI-Guidance/

B effective diffusion coefficient (estimated)
B site specific soil types (known)

B vadose zone - homogeneous/isotropic
B default soil properties (USEPA, 2004)

B 1st-order aerobic degradation rate constant (k,) and
source-vapor flux (J,) (calibrated)

B no biodegradation anaerobic zone

M soil respiration (f,.= 0.002: USEPA, 1996)

September 2018
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MASS FLUX (gal/acre-yr)

Natural Attenuation (NA) Rates: TPH vs. Benzene

TPH BENZENE
2500 25
- E -
2000 o 20
(outliers not shown) E (outliers not shown)
1500 E 15
— ot |
1000 n =70 < results gene_rally
= n=72 make sense:
500 ﬁ 5
s - TPH NA rates
0 0 roughly
consistent w/
. TPH ; BENZENE NSZD rates from
* ° literature
E 10 we — 10 -
£ o ot S = benzene NA rates
S s s f? < 100x TPH rates:
< P X 10 = consistent w/
= iy 2 1 e mass fraction in
g " 8 100l gasoline
< 10 < 4 rf’
= /w = 10 /B,ﬂ* _ _
1o 1 5 10 2030 50 7080 9095 99 10 1 5 10 2030 50 7080 92095 99
Percent Percent

median rate: 240 gal/acre-yr median rate: 0.13 gal/acre-yr
average rate: 1400 gal/acre-yr  average rate: 9.2 gal/acre-yr
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Natural Attenuation (NA) Rates: Benzene vs. TPH

2

y=0.9033x - 2.765
) R?=0.5299

LOG BENZENE MASS FLUX (gal/acre-yr)

-2 -1 0 1 2 3 4 5
LOG TPH MASS FLUX (gal/acre-yr)

KEY = difficult to predict constituent specific NA rates from bulk TPH

POINT NSZD rates
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TPH MASS FLUX (gal/acre-yr)

KEY

POINT

Factors That Affect Natural Attenuation (NA) Rates:

Surface Cover & Soil Type

SURFACE COVER

@ PAVEMENT @ GROUND

TPH

18000

(outliers not shown)

[ T O )
NSRS O
o O O
o O O
o o O

10000
8000
6000

4000

TPH MASS FLUX (gal/acre-yr)

2000

SOIL TYPE

B SAND o SILTS/LOAMS = CLAYS

- TPH

(outliers not shown)

= NA rates more affected by proximity to source and soil type than

surface cover
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2.0

1.5

1.0

0.5

0.0

-0.5

LOG MASS FLUX (gal/acre-yr)

-1.0

-1.5

-2.0

Factors That Affect Natural Attenuation (NA) Rates:
Source Vapor Concenftration

TPH i -3 BENZENE .

LOG MASS FLUX (gal/acre-yr)

. y = 1.0282x - 4.3607
R?=0.9384 y = 1.0204x - 10.044

-7 . R2=0.951

-8
/I’ -9 ‘

10 >
3 4 5 6 7 0 1 2 3 4 5 6 7
LOG SOURCE CONCENTRATION (ug/m3) LOG SOURCE CONCENTRATION (ug/m3)

NA rate (mass flux) strongly correlated with vapor source
concentration

source vapor concentration measurements may be sufficient for NA
rate determinations
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Factors That Affect Natural Attenuation Rates:
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Sensitivity Analysis -
Effective Diffusion Coefficient

1E-01 | |
: RANGE OF SITE-SPECIFIC :
| EFFECTIVEDIFFUSION | variability in mass flux
| COEFFICIENTS ! [
1€-02 ' i for specified range of
= T Dk variables
S~ ! === BENZENE
b i
3 1E-03 g
< !
=) E i = TPH and benzene
L ! NA rates vary by <1
o 1804 i order of magnitude
g | | for range of
| i documented soil
1E-05 Source depth (m) = 3.35 (median) types (sand — sandy
1st-order rate constant (1/hr) = 3.5 (TPH); 0.0082 (benzene) (median) clay) and default
Henry's Law constant (dimensionless) = 28 (TPH); 0.23 (benzene) (@ 10°C) soil properties
Source vapor concentration (ug/m?3) = 1.8E8 (TPH); 6.0E6 (benzene)
1E-06 | !
1.E-03 1.E-02

EFFECTIVE DIFFUSION COEFFICIENT (cm?/s)
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Opportunities to Improve NA Rate Estimates

Tier 1: Default Values

TABLE 3. CLASS AVERAGE VALUES OF THE VAN GENUCHTEN SOIL WATER

RETENTION PARAMETERS FOR THE 12 SCS SOIL TEXTURAL CLASSIFICATIONS

Saturated Residual van Genuchten parameters
Soil texture water water

(USDA) content. 8; | Content. 8; | o (1/cm) N M
Clay 0.459 0.098 0.01496 1.253 0.2019
Clay loam 0.442 0.079 0.01581 1.416 0.2938
Loam 0.399 0.061 0.01112 1.472 0.3207
Loamy sand 0.390 0.049 0.03475 1.746 0.4273
Silt 0.489 0.050 0.00658 1.679 0.4044
Silty loam 0.439 0.065 0.00506 1.663 0.3987
Silty elay 0.481 0.111 0.01622 1.321 0.2430
Silty elay 0.482 0.090 0.00839 1.521 0.3425
loam
Sand 0.375 0.053 0.03524 3.177 0.6852
Sandy clay 0.385 0.117 0.03342 1.208 0.1722
Sandy clay 0.384 0.063 0.02109 1.330 0.2481
loam
Sandy loam 0.387 0.039 0.02667 1.449 0.3099

Tier 2: Geotechnical Analysis

Grain or Sieve Sizes in mm

e fin2-grained | course-grained
# Clay Silt Sand Gravel 2
£ 100 fine | medium | course | fine | medium | course fine | medium| course | 5
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=
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Tier 3: In-Situ Tracer

syringe

t=0 -

step 1: tracer injection

step 2: continued

step 3: sampling volume (V)
withdrawal and analysis

FIGURE 1. Generalized schematic of in situ measurement approach.

KEY

POINT
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= data quality objectives need to be

established upfront and will be site-specific
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1st Order Aerobic Degradation Rate Constant -
TPH & benzene
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mean rate: 33 1/hr mean rate: 0.15 1/hr



MASS FLUX (ng/s)

Sensitivity Analysis - 15-Order Rate Constant (k)

1E-01 TPH 1E-01 BENZENE
MAXIMUM OBSERVED SOIL-GAS CONCENTRATION (C, = 1.6E+08 pg/m’) 1E-02 MAXIMUM OBSERVED SOIL-GAS CONCENTRATION (C, = 6.0E+06 pg/m?)
102 pememmmmomm==o==m oo i pliigpc p. A
_ 1E-03 eem=T
==SAND:Comin| - - ==SAND: Co min
1803 —CLAY: Co min © 1E-04 '
' o =CLAY: Comin [
1E-04 = =SAND: Co max i‘-—‘ 1E-05 = =SAND: Co max
===CLAY: Co max S 1606 ===CLAY: Co max
L {m) = 3.35 (median) (TH .
1E-05 ) . i . L (m) = 3.35 (median)
Hy(dimensionless) = 28.3 (@ 10°C) £ 1E-07 H, (dimensionless) = 0.23 (@ 10°C)
MINIMUM OBSERVED SOIL-GAS CONCENTRATION (C, = 950 pg/m?) 1E-09 ===
1E-07 rmm——" p— 1E.10 === MINIMUM OBSERVED SOIL-GAS CONCENTRATION (C, =3.3 pg/m’)
1E-08 1E-11
0.01 0.1 1 10 100 1000 0.00001 0.0001 0.001 0.01 0.1 1 10
1st-ORDER RATE CONSTANT (1/hr) 1st-ORDER RATE CONSTANT (1/hr)

the sensitivity of the NA rate varies depending on constituent (greater
for benzene than TPH); increases for higher permeability soils (sands)

NA rate are more sensitive to the aerobic biodegradation rate than soil
type across range of calibrated values




MASS FLUX (gal/acre-yr)

MASS FLUX (gal/acre-yr)

Temporal Trends in Natural Attenuation (NA) Rates
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NA rates in source areas

will vary over time

trends & source mass
critical for predicting

plume longevity

more frequent data =
improved remediation
decision making




LNAPL Source Depletion Time (yr)

Plume Longevity Prediction:
Source Mass - Mass Loss Rates

Vadose Zone - NA Rate Estimates Saturated Zone - Mass Flux Estimates
Source Depletion Time from Biodegradation in Vadose Zone Based on LNAPL Saturation Source Depletion Time from Dissolution Based on TPH Concentration
10000 1.E+04
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the more site-specific data, in general, the

better the prediction epember 2028 3
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Efforts to Address the Challenge

GROUNDWATER COMPOSITION




GWSdat: Ground Water Spatial-Temporal
Analysis Tool

(http:/ /www.api.org/oil-and-natural-
gas/environment/clean-water/ground-water/gwsdat)
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Regression Tool (Wilson, 2011)
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Figure A-3: Evaluating the uncertainty in the extrapolation of the trend in concentrations of MTBE in well CBC-25.
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Efforts to Address the Challenge

LNAPL COMPOSITION




Attenuation Rates for COPCs Based on Trends in
LNAPL Composition
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Recommended Measurements to Support
Remediation Optimization / “Getting to Closure”

8 July 2016

ToolKits for Evaluation of
Monitored Natural Attenuation
and Natural Source Zone

Depletion

Submitted to:

and Shell Global Solutions

Report Number: 1417511-00°

Contaminated Sites Approved Professional Socief

1-R-Revl
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STEPS

1. REMEDIAL
OBJECTIVE

2. DATA
NEEDS

3. REMEDIAL
TARGET
ASSESSMENT

Mass Risk-Based
Recovery/Control Clean-Up Standard
(LNAPL, TPH) (COPCs)

-

\
SYSTEM ENVIRONMENTAL
System Performance | | Saturated || Vadose
(e.g., cost, recovery) Zone Zone

¥

Active vs. Natural Rate Comparison
Tools (Tier I, 11, II1)

KEY = tools are available... let’s use

POINT them!
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Example - Mass Recovery/Control

N ACTIVE RECOVERY
p“o‘; S CSM REMEDIAL (e.g. LNAPL  REMEDIATION END POINT
ok TOLLGATE
?,6\»66 | | EXTENT
W | | 2 > PRACTICABLE '
8&| - __.
SYSTEM PERFORMANCE ASSESSMENT

* TPH MASS RECOVERY VS. TIME OR COST ‘

* LNAPL/WATER VOLUME RECOVERY VS. TIME

* TPH MASS RECOVERY VS. CO2

P o®
K0
OeChe® SATURATED ZONE VADOSE ZONE
00\‘ “h\‘ * LNAPL TRANSMISSIVITY ANALYSIS « TPH VADOSE ZONE (SOIL-GAS
& P * LNAPL VOLUME/FOOTPRINT GRADIENT METHOD)
* LNAPL VELOCITY « 02 FLUX (O2 GRADIENT METHOD)
* TPH/COPC MASS FLUX/DISCHARGE « CO2 FLUX (TRAPS, SURFACE FLUX
* TPH/COPC CONCENTRATIONS VS. CHAMBER)
TIME/DISTANCE « TEMPERATURE FLUX

« TPH/COPC CONCENTRATIONS
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Example: Composition

ACTIVE
CSM REMEDIAL RECOVERY REMEDIATION
DEVELOPMENT  OBJECTIVES (e.g., SVE) TOLLGATE

Recovery

73
(72
O
=
3
=

L

-

VADOSE ZONE

« COPC VOLATILIZATION TEST

(SOIL-GAS GRADIENT METHOD)

SYSTEM PERFORMANCE

+ COPC MASS RECOVERY VS. TIME OR COST
+ COPC/VAPOR RECOVERY VS. TIME

+ COPC MASS RECOVERY VS. CO2

* REBOUND TEST

END POINT

GW CLEANUP
VALUES
(MCLs)

VADOSE ZONE

SATURATED ZONE

(*could also be pre-remediation)

+ COPC VOLATILIZATION TEST
(SOIL-GAS GRADIENT METHOD)

+ COPC CONCENTRATION VS. TIME & SPACE
* LNAPL COMPOSITION VS. TIME
+ COPC DISSOLUTION TEST
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Conclusions

B quantification of natural attenuation rates is critical for improved,
more sustainable remediation/risk-based decision making

T

B compositional analysis is needed for meaningful risk assessment
and plume longevity prediction

B natural attenuation rates are more sensitive to space (source
concentration, proximity to source, soil type) than time (seasonality)

B we can do better:
B improved data collection

B [Implementation of existing methods and tools ... let's use them!
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