

# **Petroleum Vapor Intrusion: Sampling & Analytical Issues**

**PVI Webinar** 

## **June 26, 2012**

Dr. Blayne Hartman Hartman Environmental Geoscience 858-204-6170 blayne@hartmaneg.com



## Most Common VI Bloopers

- Unit Confusion
  - Assuming ug/L equivalent to ppbv
  - Assuming ug/m3 equivalent to ppbv
  - Vacuum units: inches Hg to inches water
- Screening Levels
  - Comparing to generic screening Levels
  - Not calculating correct levels
- Sampling & Analysis Errors
  - Using wrong hardware
  - Using wrong analysis



| Sample ID                                             | Date<br>Sampled | TPH<br>Gas<br>mg/L | Benzene<br>mg/L | Toluene<br>mg/L | Ethylbenzene<br>mg/L | Xylenes<br>mg/L | MTBE<br>mg/L |
|-------------------------------------------------------|-----------------|--------------------|-----------------|-----------------|----------------------|-----------------|--------------|
| Residential<br>Land Use ESL<br>((Shallow Soil<br>Gas) | NA              | 10.0               | 0.084           | 63.0            | 0.98                 | 21.0            | 9.4          |
|                                                       | 11/10/2009      | <0.25              | <0.05           | <0.05           | <0.05                | <0.05           | NT           |
| SG1                                                   | 10/1/2010       | NT                 | <0.005          | <0.005          | <0.005               | <0.005          | <0.005       |
|                                                       | 11/10/2009      | <0.25              | <0.05           | <0.05           | <0.05                | <0.05           | NT           |
| SG2                                                   | 10/1/2010       | NT                 | <0.005          | <0.005          | <0.005               | <0.005          | <0.005       |
|                                                       | 11/10/2009      | <0.25              | <0.05           | <0.05           | <0.05                | <0.05           | NT           |
| SS1                                                   | 10/1/2010       | NT                 | <0.005          | <0.005          | <0.005               | <0.005          | <0.005       |

Notes

0

| <### | Below Laboratory Method Detection Limit | Ł |
|------|-----------------------------------------|---|
|------|-----------------------------------------|---|

mg/L Milligram per liter

- MTBE Methyl tertiary butyl ether
- NA Not applicable
- NT Analyte not tested
- TPHg Total Petroleum Hydrocarbons as gasoline

### CHEMICAL & ENVIRONMENTAL LABORATORIES, INC.

#### ANALYTICAL REPORT

Page 2 of 2

#### ---- VOLATILE ORGANICS BY EPA TO-15 (GC/MS) ---

| Client Name :<br>Project Name :<br>Matrix : Air<br>Unit: ppm v |           |     |     | Date Sampled :<br>Date Received :<br>Date Analyzed :<br>Date Reported : |      |
|----------------------------------------------------------------|-----------|-----|-----|-------------------------------------------------------------------------|------|
| SAMPLE ID                                                      | SS Closet | SG1 | SG  |                                                                         |      |
| C&E LAB ID                                                     |           |     | 101 | MDL                                                                     | PQL  |
| DILUTION FACTOR                                                | 1         | 1   | 1   |                                                                         |      |
| 1,2,4-Trimethylbenzene                                         | ND        | ND  | ND  | 0.005                                                                   | 0.01 |
| 1,3-Dichlorobenzene                                            | ND        | ND  | ND  | 0.005                                                                   | 0.01 |
|                                                                | ND        | ND  | ND  | 0.005                                                                   | 0.01 |
| 1,4-Dichlorobenzene                                            | NID       | ND  | ND  | 0.005                                                                   | 0.01 |



## IA & SG Screening Levels

- Indoor Air:
  - Benzene Res: 0.084 ug/m3 (1e-6)
  - Benzene Com: 4.2 ug/m3 (1e-5) 50x higher
- Sub-slab Soil Gas
  - Benzene Res: 8.4 ug/m3 (1e-6), a=.01
  - Benzene Com: 840 ug/m3 (1e-5), a=.005 100x higher
- External Soil Gas (5' bgs)
  - Benzene Res: 42 ug/m3 (1e-6), a=.002
  - Benzene Com: 4200 ug/m3 (1e-5), a=.001 100x higher





## Allowable Soil Gas Levels (Benzene 1e-6 Risk, residential)

| State     | Alpha  | 1/Alpha | Risk Based Level<br>(ug/m <sup>3</sup> ) |
|-----------|--------|---------|------------------------------------------|
| EPA Now   | 0.002  | 500     | 155                                      |
| EPA 2012? | 0.1    | 10      | 3.1 (gulp!)                              |
| CA        | 0.002  | 500     | 42                                       |
| NJ        | 0.05   | 20      | 16                                       |
| MO        |        |         | 118,000                                  |
| TN        | 0.0013 | 780     | 2,414                                    |
| СТ        | 0.1    | 10      | 192                                      |



## Allowable Benzene in GW 1e-6 risk

- New OSWER Guidance:
  0.31 ug/m3/0.001 = 0.31 ug/L/0.2 = 1.5 ug/L
- Proposed Exclusion Value: 1000 ug/L

~700 times lower than database suggests!!







# Methods to Assess VI

- Indoor Air Sampling
- Groundwater Sampling
- Soil Phase Sampling
- Predictive Modeling
- Measure Flux Directly
- Soil Gas Sampling
- Supplemental Tools/Data







## The Most Important Ingredient

- Experience:
  - Consultant
  - Collector done soil gas before?
  - Lab certified for methods?
  - Regulator
  - Public
  - YOU!

## What level person is going in the houses?





## **Approach Generalizations**

- Indoor Air
  - Always find something
  - Multiple sampling rounds: extra time & \$
- Groundwater Data
  - Typically over-predicts risk
- Soil Phase Data
  - Typically not allowed; over-predicts risk
- Soil Gas Data
  - Transfer rate unknown
  - Sub-slab intrusive



# Indoor Air Measurement

- Pros:
  - Actual Indoor Concentration
- Cons:
  - Where From?
    - Inside sources (everything!)
    - Outside sources (exhaust)
    - –People activities NO CONTROL!
  - Time-intensive protocols
  - Snapshot, limited data points
  - Expensive!!



## Indoor Air Sampling Lessons

- Always Collect Ambient Air Sample
- Hardware Issues
  - Blanks
  - Performance Fill at Proper Rate?
  - Fittings Tight? Cross-threaded?
  - Pen/marker Type Don't use Sharpies
  - Gauges on cans, not on flow chokes



## But We Don't Use "CHLORINATED" Chemicals Anymore.....



## Why is Long-Term IA Sampling Such a Terrible Idea for Petroleum HCs?



## **Bloonie Analysis Results**

| 12) | Isopropyl alcohol         | 3.317 | 45  | 94670    | 3850.82 ng  | # | 1   |   |
|-----|---------------------------|-------|-----|----------|-------------|---|-----|---|
| 13) | Methylene Chloride        | 3.680 | 84  | 6533     | 7.84 ng     | # | 1   |   |
| 16) | Diisopropyl ether*        | 4.264 | 45  | 1756282  | -817.99 ng  | # | 1   | _ |
| 17) | 1,1-Dichloroethane        | 4.091 | 63  | 52909    | -25.95 ng   | # | 1   |   |
| 18) | Ethyl-t-butyl ether*      | 4.710 | 59  | 501954   | 253.12 ng - |   | 67  |   |
| 19) | 2-Butanone                | 4.871 | 72  | 36815    | 861.58 ng   | # | 1   |   |
| 22) | Chloroform                | 4.859 | 83  | 22151    | -9.38 ng-   | # |     |   |
| 23) | Bromochloromethane        | 4.728 | 128 | 217      | 0.58 ng     | # | 36  |   |
| 26) | 1,1-Dichloropropene       | 5.109 | 75  | 2475     | 1.63 ng     | # | 1   |   |
| 29) | 1,2-Dichloroethane        | 5.151 | 62  | 1445     | 1.00 ng     |   | 56  |   |
| 30) | TAME* (2-methoxy-2-met    | 5 347 | 73  | 5913     | 3.94 ng     | # | 54  | _ |
| 31) | Benzene*                  | 5.264 | 78  | 2724469  | 750.89 ng   |   | 100 | V |
| 32) | Trichloroethene           | 5.705 | 95  | 1454     | 1.23 119    | Ħ | 12  |   |
| 33) | 1,2-Dichloropropane       | 5.847 | 63  | 109116   | 143.17 ng   | # | 1   | - |
| 34) | Bromodichloromethane      | 6.008 | 83  | 127010   | -88.94 ng   | # | 47  |   |
| 35) | Dibromomethane            | 5.961 | 93  | 794      | 1.84 ng     | # | 28  |   |
| 36) | cis-1,3-Dichloropropene   | 6.336 | 75  | 3448     | 2.82 ng     | # | 1   |   |
| 38) | Methyl Isobutyl Ketone    | 6.520 | 43  | 737901   | 1989.35 ng  | # | 49  |   |
| 39) | Toluene*                  | 6.592 | 92  | 7153783  | 2744.00 ng  | # | 57  | ~ |
| 40) | trans-1,3-Dichloropropene | 6.651 | 75  | 14157    | 12.87 ng    | # | 1   |   |
| 41) | 1,1,2-Trichloroethane     | 6.860 | 83  | 219678   | -553.89 ng  | # | 1   |   |
| 42) | 1,2-Dibromoethane         | 7.139 | 107 | 424      | 0.84 ng     |   | 96  |   |
| 46) | 2-Hexanone                | 7.127 | 43  | 490027   | 809.97 ng   | # | 33_ |   |
| 47) | Dibromochloromethane      | 7.312 | 129 | 11484    | 6.08 ng     |   |     |   |
| 48) | Chlorobenzene             | 7.717 | 112 | 60252    | 10.78 ng    | # | -26 |   |
| 49) | Ethylbenzene*             | 7.669 | 106 | 2499510m |             |   | _   | V |

## Bloonie Analysis Results (continued)

|     | , , , , <u>.</u> <u>.</u> |        |     | 111100 100.55 119        | 15 /              |
|-----|---------------------------|--------|-----|--------------------------|-------------------|
| 60) | n-Propylbenzene           | 8.616  | 91  | 8054470 1288.03 ng) #    | 26                |
| 62) | 1,3,5-Trimethylbenzene    | 8.741  | 105 | 6061679m 1318.01 ng      | V                 |
| 63) | 2-Chlorotoluene           | 8.681  | 91  | 6809750 1789.21 ng       | <u>   49     </u> |
| 64) | 4-Chlorotoluene           | 8.741  | 91  | 1265341 - 322.07 ng      |                   |
| 65) | tert-Butylbenzene         | 9.027  | 119 | 1891115 <u>435.53 ng</u> |                   |
| 66) | 1,2,4-Trimethylbenzene    | 9.027  | 105 | 8143013m 1879.66 ng      | V                 |
| 67) | sec-Butylbenzene          | 9.027  | 105 | 8143968 1416.03 ng       |                   |
| 68) | p-Isopropyltoluene        | 9.253  | 119 | 54681 (11.06 ng)         | 92 /              |
| 71) | n-Butylbenzene            | 9.562  | 91  | 27682 5.95 ng            | 99                |
| 76) | Naphthalene               | 11.033 | 128 | 869 <u>0 69 ng</u>       | 100               |
| 79) | Ethanol                   | 2.978  | 45  | 983528 207445.35 ng      | 100 V             |
| 80) | t-Butanol *               | 3.317  | 59  | 432657 9715.81 ng #      | 1                 |



# Cleaning Your Dishes? (or Polluting Your House)





## Dawn VOC Analysis Results

| 2,2,4-Trimethylpentane    | 54         | 10  | ug/m3 | 1    | EL01310 | 13-Dec-10 | 13-Dec-10 | EP |
|---------------------------|------------|-----|-------|------|---------|-----------|-----------|----|
| n-Heptane                 | 230        | 5.0 |       |      | "       |           | "         |    |
| Trichloroethene           | ND         | 5.0 |       |      | п       |           |           |    |
| 1,2-Dienioropropane       | ND         | 50  | "     | "    | "       | "         | "         |    |
| 1,4-Dioxane               | 2100       | 5.0 |       | "    |         | "         |           |    |
| Bromodichloromethane      | ND         | 5.0 |       |      | "       |           | "         |    |
| eis-1,3-Dichloropropene   | ND         | 5.0 | "     | "    |         |           | "         |    |
| 4-Medyl-2-pentanone       |            |     |       |      | 400     | "         |           |    |
| trans-1,3-Diokloroprop    | Dioxane    |     |       | - 2' | 100     | "         | "         |    |
| 1,3-Dichloropropane       |            |     |       |      |         | "         |           |    |
| Toluene                   | 120        | 5.0 | "     | "    | "       | "         | "         |    |
| 1,1,2-Trichloroethane     | ND         | 5.0 | "     |      | "       | "         |           |    |
| 2-Hexanone (MBK)          | ND         | 10  | "     | н    |         | "         |           |    |
| Dibromochloromethane      | ND         | 5.0 | "     |      |         | "         |           |    |
| Tetrachloroethene         | ND         | 5.0 | "     | "    | "       | "         | "         |    |
| 1,2-Dibromoethane (EDB)   | ND         | 5.0 | "     | "    | п       | "         |           |    |
| 1,1,1,2-Tetrachloroethane | ND         | 5.0 |       |      |         | н         | "         |    |
| Chlorobenzene             | ND         | 5.0 | "     | "    |         | "         |           |    |
| Ethylbenzene              | 25         | 5.0 | **    |      | "       |           |           |    |
| m,p-Xylene                | 27         | 5.0 |       |      |         | "         |           |    |
| Styrene                   | ND         | 5.0 |       | "    | "       |           |           |    |
| o-Xylene                  | 16         | 5.0 | "     | "    |         |           |           |    |
| Bromoform                 | ND         | 20  | "     | "    | "       |           |           |    |
| 1,1,2,2-Tetrachloroethane | ND         | 5.0 | "     |      | "       |           |           |    |
| 4-Ethyltoluene            | 13         | 5.0 | "     |      | "       |           |           |    |
| 1,2,3-Trichloropropane    | ND         | 10  | "     | н    | "       |           |           |    |
| Isopropylbenzene (Cume    |            |     |       |      |         | "         | "         |    |
| Bromobenzene              | hthalen    |     |       |      | 31      |           |           |    |
| 2-Chlorotobrene           | Intraction | 5   |       |      |         |           |           |    |
| n-Propytoenzene           | NO         | 10  |       |      |         | "         | "         |    |
| Isopropyltoluene          | 1200       | 10  | ug/m3 | 1    | FL01310 | 13-Dec-10 | 13-Dec-10 | EP |
| ,2-Dichlorobenzene        | ND         | 10  | "     |      | "       |           |           |    |
| Butylbenzene              | ND         | 10  | "     |      |         | "         | н         |    |
| 2 Dihawa 2 ahlaranganan   | ND         | 20  |       |      |         |           |           |    |

## No Wonder She's Smiling

| DRAFT: Soap Head Space (E012073-01) Vapor | Sampled: 10 | -Dec-10 Rec | eived: 13-D | ec-10 |         |           |           |           |      |
|-------------------------------------------|-------------|-------------|-------------|-------|---------|-----------|-----------|-----------|------|
| Propene                                   | 190         | 10          | ug/m3       | 1     | EL01310 | 13-Dec-10 | 13-Dec-10 | EPA TO-15 |      |
| Dichlorodifluoromethane (F12)             | ND          | 10          |             | "     | "       | "         |           | "         |      |
| Chloromethane                             | 190         | 5.0         |             |       |         |           |           |           |      |
| Dichlorotetrafluoroethane (F114)          | ND          | 10          |             | "     | "       |           |           |           |      |
| Vinyl chloride                            | ND          | 5.0         |             | "     |         |           |           | "         |      |
| 1,3-Butadiene                             | 7.2         |             |             |       |         |           |           |           | •    |
| Bromomethane                              | ND          |             |             |       |         |           |           |           |      |
| Chloroethane                              | ND          | Eth         | 3110        |       |         |           |           | 000!!     |      |
| Ethanol                                   | 6000000     |             |             |       |         |           | · · · ,   |           | Е    |
| Trichlorofluoromethane (F11)              | ND          | 5.0         | "           | "     | "       | "         |           |           | 1000 |
| Acetone                                   | ND          | 20          |             |       |         | "         |           |           |      |
| Isopropyl alcohol                         | ND          | 10          | "           |       | "       | "         |           | "         |      |
| 1,1-Dichloroethene                        | ND          | 5.0         |             | "     | "       |           |           | "         |      |
| Tertiary-butyl alcohol (TBA)              | ND          | 20          | "           |       | "       | "         |           |           |      |
| 1,1,2-Trichlorotrifluoroethane (F113)     | ND          | 10          |             |       |         |           |           | "         |      |
| Methylene chloride (Dichloromethane)      | ND          | 10          |             |       |         |           |           | "         |      |
| Carbon disulfide                          | ND          | 5.0         |             |       | "       |           |           |           |      |
| trans-1,2-Dichloroethene                  | ND          | 5.0         |             | "     |         | "         |           |           |      |
| Methyl tertiary-butyl ether (MTBE)        | ND          | 5.0         |             | "     |         |           |           | "         |      |
| Vinyl acetate                             | ND          | 10          | "           |       |         |           |           | "         |      |
| 1,1-Dichloroethane                        | ND          | 5.0         | "           | "     |         |           |           | "         |      |
| 2-Butanone (MEK)                          | 100         | 5.0         | "           |       | "       |           |           | "         |      |
| n-Hexane                                  | 110         | 5.0         |             |       | "       |           |           | "         |      |
| cis-1,2-Dichloroethene                    | ND          | 5.0         |             |       | "       |           |           |           |      |
| Diisopropyl ether (DIPE)                  | ND          | 5.0         |             |       |         | "         |           |           |      |
| Ethyl acetate                             | ND          | 5.0         |             |       | "       | "         |           | "         |      |
| Chloroform                                | 130         | 5.0         |             | "     |         |           |           |           |      |
| 2,2-Dichloropropane                       | ND          | 10          | "           |       |         |           |           |           |      |
| Tetrahydrofuran                           | ND          | 5.0         |             |       |         |           |           | "         |      |
| Ethyl tert-butyl ether (ETBE)             | ND          | 5.0         |             |       |         |           |           | "         |      |
| 1,1,1-Trichloroethane                     | ND          | 5.0         | "           | "     | "       |           |           |           |      |
| 1,2-Dichloroethane (EDC)                  | ND          | 5.0         | "           |       | "       |           |           |           |      |
| 1,1-Dichloropropene                       | ND          | 10          | "           |       | "       | "         |           |           |      |
| Benzene                                   | 19          | 5.0         |             |       | "       | "         |           | "         |      |
| Carbon tetrachloride                      | ND          | 5.0         | "           | "     | н       |           | н         |           |      |
| Dibromomethane                            | ND          | 10          |             | "     |         |           |           |           |      |
| Cyclohexane                               | ND          | 10          |             | "     | "       |           |           |           |      |
| Tertiary-amyl methyl ether (TAME)         | ND          | 5.0         |             | "     | "       |           |           |           |      |
|                                           |             |             |             |       |         |           |           |           |      |



# Barbasol ... AHHHHH!!!



## Ahhh or Aaaah?

#### DRAFT: Volatile Organic Compounds by EPA TO-15

#### H&P Mobile Geochemistry, Inc.

| Analyte                                 | Result        | Reporting<br>Limit | Units     | Dilution<br>Factor | Batch   | Prepared  | Analyzed                                | Method             | Notes |
|-----------------------------------------|---------------|--------------------|-----------|--------------------|---------|-----------|-----------------------------------------|--------------------|-------|
| DRAFT: Shaving Cream (E103030-01) Vapor | Sampled: 03-M | ar-11 Receiv       | ved: 04-M | lar-11             |         |           |                                         |                    |       |
| Carbon disulfide                        | 136           | 31.5               | "         | ďď                 | •       | 1 1       | "                                       |                    |       |
| trans-1,2-Dichloroethene                | ND            | 40.2               |           | -0.5               | Z =     | - 44      | ) ug/                                   | $m_3$              |       |
| Methyl tertiary-butyl ether (MTBE)      | ND            | 18.3               | "         |                    | "       |           | - <u>8</u>                              |                    |       |
| Vinyl acetate                           | ND            | 17.8               | "         | 17                 | "       |           |                                         |                    |       |
| 1,1-Dichloroethane                      | ND            | 20.5               | "         | "                  | "       | "         |                                         | "                  |       |
| 2-Butanone (MEK)                        | ND            | 149                | "         | "                  | 17      | "         |                                         |                    |       |
| n-Hexane                                | 2590          | 17.8               | "         | "                  |         |           |                                         |                    |       |
| cis-1,2-Dichloroethene                  | ND            | 20.1               | "         | "                  |         |           |                                         |                    |       |
| Diisopropyl ether (DIPE)                | ND            | 21.2               | **        |                    |         |           |                                         | 5.4                |       |
| Ethyl acetate                           | ND            | 91.2               |           |                    |         |           |                                         | Mobile             |       |
| Chloroform                              | ND            | 24.8               | "         | "                  |         |           | 5 🛛 Ge                                  | ochemistr          | V     |
| 2.2-Dichloropropane                     | ND            | 23.4               | "         | "                  |         |           |                                         | Inc.               | /     |
| Tetrahydrofuran                         | ND            | 149                | "         | "                  |         |           | 0                                       |                    |       |
| Ethyl tert-butyl ether (ETBE)           | ND            | 21.2               | "         | "                  |         |           |                                         |                    |       |
| 1,1,1-Trichloroethane                   | ND            | 27.6               | "         | 20m                | n       | e = 3     | 220 1                                   | 10/m?              |       |
| 1,2-Dichloroethane (EDC)                | ND            | 20.5               | "         | JCHZ               |         | ╭ — 、     | りつう し                                   | Jg/mí              | )     |
| 1,1-Dichloropropene                     | ND            | 23.0               |           | "                  | *       |           | ,,                                      |                    |       |
| Benzene                                 | 389           | 16.2               | "         |                    | **      |           |                                         | "                  |       |
| Carbon tetrachloride                    | ND            | 31.9               | "         | "                  | "       | "         | 11                                      | "                  |       |
| Cyclohexane                             | 469           | 87.1               | "         | "                  | "       | "         | "                                       |                    |       |
| p-Isopropyltoluene                      | 37100         | 27.8               | ug/m3     | 5                  | EC10305 | 04-Mar-11 | 04-Mar-11                               | EPA TO-15          |       |
| 1,2-Dichlorobenzene                     | ND            | 61.0               | "         | "                  | "       | "         | "                                       | "                  |       |
| n-Butylbenzene                          | 3000          | 27.8               |           |                    | "       | "         | "                                       | "                  |       |
| 1,2-Dibromo-3-chloropropane             | ND            | 49.0               | **        |                    | "       | "         | "                                       | "                  |       |
| Naphthalene                             | 104           | 26.6               | "         | 11                 | "       | "         | "                                       | "                  |       |
| 1,2,4-Trichlorobenzene                  | 160           | 37.6               | "         |                    |         | c         |                                         | <b>•</b> " /       | 0     |
| 1,2,3-Trichlorobenzene                  | 134           | 37.6               | "         | 1 I I              | PH=     | =6XI      | ) ( )( )(                               | ) ug/r             | n s   |
| Hexachlorobutadiene                     | 89.2          | 54.1               | "         | "                  | "       |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ~ ~ <del>0</del> 1 |       |
| Xylenes (total)                         | ND            | 22.0               |           | "                  |         | "         |                                         |                    |       |

# **Got Gas?** (natural that is)



## Active Soil Gas

- Pros:
  - Representative of Subsurface Processes
  - Higher Screening Levels
  - Relatively Inexpensive
  - Can Give Real-time Results
- Cons:
  - Mass Transfer Coefficient Unknown
  - Large Spatial Variability
  - Protocols Still Debated





## Which Soil Gas Method?

- Active?
- Passive? (limited use)
- Flux Chambers? (limited use)

Active method most often employed for VI



## **Passive Soil Gas Samplers**



Adsorbent inside tube open on one end Adsorbent inside badge



Adsorbent inside vapor permeable, waterproof membrane



## Ē

## Site #2 – High GW Site

- Trailer Park Adjacent to former Gas Station
- Gasoline Contamination Underlying
  - GW contamination ~6' bgs
  - Very high soil gas at 1.5' to 3'

No slabs to sample

**Chances for False Positives High with IA** 

What Alternative Approach to Use?





## **Static Flux Chamber**





## **Probe Considerations**

- Tubing Type
  - Rigid wall tubing ok (nylon, teflon, SS)
  - Flexible tubing not (tygon, hardware store)
- Probe Tip
  - Beware metal tips (may have cutting oils)
- Materials Used to Bury Probes
  - Sand, cement
- Equipment Blanks
  - Need to collect blank through collection system



| rat           | tor : cb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                         |       |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-------|--|
| nt            | Time: Nov 15 08:59:47 2006<br>Method : C:\MSDCHEM\1\METHODS\102406TOUGM3<br>Title : TO-15 Full Scan Mode<br>Update : Fri Oct 27 07:30:49 2006<br>nse via : Initial Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>.</b> M                      |                         |       |  |
| dance<br>e+07 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |       |  |
| e+07          | POLYETHYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         | 1     |  |
| e+07          | TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |       |  |
| e+07          | BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 1                       |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                         |       |  |
| e+07          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 11,11                   |       |  |
| +07           | DT.T.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                         |       |  |
| 0000          | 10 me 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ene,S                           | ne.TC                   |       |  |
| 0000          | lethane, l<br>bertrane, l<br>huorowitis<br>ane-d4, S<br>sane-d4, S<br>sane-d4, S<br>sane-d4, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uorobenz                        | hylbenze                |       |  |
| 0000          | Dichlorodifluoromethane, TC<br>Acetone, TC<br>Acetone, TC<br>Multiphelipropring, FC<br>Multiphelipropring, FC<br>1,1,2-Trichloroethane, TC<br>2-Butanone, TC<br>0-Acohiloroethane, 44, S<br>1,1,1-Trichloroethane, 44, S<br>1,1,1-Trichloroethane, 44, S<br>1,1,1-Trichloroethane, TC<br>0-Acohileroethane, TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne.TC<br>4-Bromofluorobenzene,S | 12.4Trimetry/benzene,TC | 11/11 |  |
| 0000          | Dichlorodilluc<br>Acetone, TC<br>Acetone, TC<br>Multiplitipling<br>1,1,2-Trichtor<br>1,1,1-Trichtor<br>1,2-Dichloroc<br>(Methine, TC<br>1,1,1-Trichtor<br>1,1,1-Trichtor<br>1,2-Dichloroc<br>Chatane, TC<br>8-enzene, TC<br>8-enze | o-Xylene,TC<br>4-Brom           | 1                       | P M   |  |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . I M.                          | 15 10 11 11             | 1 1/4 |  |



# Some Lessons Learned

## Watch what you use to seal holes



## Loaded with TCE



## Loaded with TBA



# **Deconning**?



## **Better Be Sure to Triple Wash!**

#### H&P Mobile Geochemistry, Inc.

| Analyte                            | Result             | Reporting<br>Limit | Units   | Dilution   | Batch   | Prepared  | Analyzed        | Method    | Notes |
|------------------------------------|--------------------|--------------------|---------|------------|---------|-----------|-----------------|-----------|-------|
|                                    |                    |                    |         | Factor     | Datti   | Prepared  | Anaryzeu        | Meniou    | 10/63 |
| DRAFT: Liquinox (E102045-02) Vapor | Sampled: 10-Feb-11 | Received: 10       | -Feb-ll |            |         |           |                 |           |       |
| Benzene                            | 1530               | 16.2               | ug/m3   | 5          | EB11401 | 10-Feb-11 | 10-Feb-11       | EPA TO-15 |       |
| Carbon tetrachloride               | ND                 | 31.9               |         | ,          | ,       | ,         | ,               | "         |       |
| Trichloroethene                    | ND                 | 27.3               |         | ,          | ,       | ,         | ,               | "         |       |
| 1,2-Dichloropropane                | ND                 | 46.9               |         | <b>D</b> . | "       | . 1       | 520             |           |       |
| Bromodichloromethane               | ND                 | 34.0               |         | Bei        | nzen    | e = 1     | 3301            |           |       |
| cis-1,3-Dichloropropene            | ND                 | 23.0               |         | ,          |         | ,         | ,               | "         |       |
| 4-Methyl-2-pentanone (MIBK)        | ND                 | 41.5               |         | ,          |         | ,         | ,               | "         |       |
| trans-1,3-Dichloropropene          | ND                 | 23.0               |         | ,          |         | ,         | ,               | "         |       |
| Toluene                            | 90.2               | 19.1               |         | ,          |         | ,         | ,               | "         |       |
| 1,1,2-Trichloroethane              | ND                 | 27.6               |         |            |         | ,         | ,               | "         |       |
| 2-Hexanone (MBK)                   | ND                 | 41.5               |         | ,          | ,       | ,         | ,               | "         |       |
| Dibromochloromethane               | ND                 | 43.2               |         |            | ТЕХ     | >35       | $00^{\circ}$ ug | z/m3      |       |
| Tetrachloroethene                  | ND                 | 34.4               |         | ,          | "       | "         |                 | "         |       |
| 1,2-Dibromoethane (EDB)            | ND                 | 39.0               |         | ,          |         | ,         | ,               | "         |       |
| 1,1,1,2-Tetrachloroethane          | ND                 | 34.8               |         | ,          |         | ,         | ,               | "         |       |
| Chlorobenzene                      | ND                 | 23.4               |         |            |         | ,         | "               | "         |       |
| Ethylbenzene                       | 671                | 22.0               |         | ,          | ,       | ,         | ,               | "         |       |
| m,p-Xylene                         | 1950               | 44.0               |         | ,          |         | ,         | "               | "         |       |
| Styrene                            | ND                 | 21.6               |         | ,          |         | ,         | ,               | "         |       |
| o-Xylene                           | 612                | 22.0               |         | ,          |         | ,         | "               | "         |       |
| Bromoform                          | ND                 | 52.4               |         | ,          |         | ,         | ,               | "         |       |
| 1.1.2.2 Totrachloroothana          | ND                 | 24.0               |         | ,          |         | ,         |                 | п         |       |

## **F**

## Soil Gas Sampling Issues

## • Sample Size

- Greater the volume, greater the uncertainty
- Smaller volumes faster & easier to collect
- Containers
  - Canisters: More blank potential. Higher cost
  - Tedlars: Good for ~2 days. Easier to collect
- Flow Rate
  - Really not imp. But most agencies < 200 ml/min</p>
- Tracer/Leak Compound
  - Crucial for sub-slab & larger sample volumes
  - Gases (He, SF6, Propane) & Liquids (IPA)



## Canisters vs. Tubes





## **SVOC** Sampling







## **Beware of the Hardware**





## **Soil Gas Sampling for PVI**

- Might Need to Sample <5' bgs
  - If samples >5' bgs exceed allowable levels
  - How to know? On-site analysis best
  - If not, collect samples anyway
- Always Collect Oxygen Data (& CO2 & CH4)
- Might Need Soil Phase Data

**Oxygen Profiling Only?** 



# NJDEP Gasoline Exclusion Criteria

## VI Investigation is not required when:

- ≥10 ft between water table and foundation and benzene in GW is ≤1,000 µg/L; or
- ≥5 ft between seasonal high water table and benzene in shallow GW is ≤100 µg/L; or
- ≥5 ft between seasonal high water table and foundation, oxygen levels measured at ≥2% (v/v), and benzene in shallow GW is ≤1,000 µg/L.



## CA Low Risk Closure Policy

A LUFT site is assumed to present no unacceptable risk from vapor intrusion if the following conditions are met:

- *Dissolved* groundwater concentrations <1000 (ug/L) for benzene and 5' of clean soil to receptor.
- Dissolved groundwater concentrations >1000 (ug/L) for benzene for TPH and 10' from receptor.
- Soil gas valuex 100x higher if 5' of aerobic zone.
- Free product is 30' or more from receptor



## **Definition of Clean Soil (p.138)**

 In the unsaturated zone, clean soil is defined as TPH concentrations less than 100 mg/kg or oxygen present concentrations >4%.

Under these conditions, it is assumed that natural attenuation is sufficient to mitigate Concentrations of volatile petroleum constituents



### **₽**

## O<sub>2</sub> Profiling - Approach

- 18 Locations Throughout Neighborhood
- Vertically Every Foot Down to 8'-10' bgs
  - Used direct-push (not PRT)
  - Oxygen by portable meter (& CO2 & CH4)
- Soil Samples at 1' & 5' bgs (backup)
- Did All Locations in 11 Hours!







## O<sub>2</sub> Profiling - Results

- Oxygen > 10% from 1'-5' at all Locations
- Oxygen > 4% from 5'-8' at all Locations
- Soil Phase Data < 100 mg/kg
- Only Houses With Basements Proposed for IA/SS

Reduced # of Houses from ~50 to 10 ~\$40,000 Savings per event!!

## Common Soil Gas Analyses

## • VOCs

-Soil and Water Methods: 8021, 8260 -Air Methods: TO-14, TO-15, TO-17 Hydrocarbons -8260, TO-3, MA-APH -Must check lab to see if they can do • Oxygen, carbon dioxide -ASTM 1945-96 – Portable meters ok • SVOCs -TO-4, TO-10, TO-13



Autosampler GC/MS for TO-17 Analysis

TO-17 gets PVOCs, TPHg, TPHd in same run!!

## **TPH Compounds**

- Recommended
  - BTEX (BE only drivers)
  - Methane
  - 1-2 dichloroethane (EDC) & 1-2 dibromoethane (EDB)
  - Naphthalene
- Some States:
  - Aliphatics (C5-C8 & C9-C12)
  - Aromatics (C9-C10)



## **Other Analytical Issues**

- 1,3 Butadiene
  - False positive caused by i-butylene
  - Must have lab manually read ion chromatogram
  - Not on most agency soil gas target lists
- Naphthalene
   8260, TO-15, TO-17

TO-17 gets PVOCs, TPHg, TPHd in same run!!



## Supplemental Tools/Data

- Site Specific Alpha Using Radon – Factor of 10 to 100. \$100/sample
- Indoor Air Ventilation Rate
   Factor of 2 to 10. ~\$500 per determination.
- Vadose Zone Permeability Testing
- Other
  - Flux Chambers supportive LOE
  - Continuous real-time monitoring
  - Pressure measurements/fluctuation

Refer to ASTM E2600-08 Table X.1 for summary table



7-Eleven building before, during, and after the release of the carbon dioxide gas. The air change rate was calculated using a first-order exponential equation for the carbon dioxide decay rate.

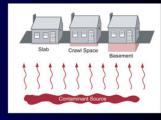
The two air change measurements were made between 9:35 and 10:05 AM (low foot traffic volume) and between 12:10 and 12:35 PM (high foot traffic volume). The approximate volume of the retail portion of the 7-Eleven store is 11,400 cubic feet.

### 3.0 <u>FINDINGS</u>

The air change rates are summarized in the following table.

| Description                                   | Approximate air changes per hour<br>calculated by regression analysis from<br>logged data |
|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| Average during low foot traffic (mid morning) | 2.75                                                                                      |
| Average during high foot traffic (lunch hour) | 3.26                                                                                      |
| Minimum                                       | 2.64                                                                                      |
| Maximum                                       | 3.34                                                                                      |
| Overall average                               | 3.11                                                                                      |

The estimated potential error in these measurements is plus or minus 0.3 air changes per hour. Details of the air change measurements are presented in Appendix A.




## Forthcoming VI Events

- AWMA VI Conference Denver: Oct 3 & 4
- 2-day VI Course: 2013 Dates Being Scheduled



## **Previews of the VI Future**



- VI Likely to be a Concern at Your Sites
- Variable Regulatory Guidance Makes Assessment Tricky & Slow
- New EPA OSWER Guidance to be Stricter
- ASTM Standard Increase # of Sites
- Hydrocarbons to be Less of a Concern

## **VI** Articles



- Overview of SV Methods (www.handpmg.com)
  - LustLine Part 1 Active Soil Gas Method, 2002
  - LustLine Part 2 Flux Chamber Method, 2003
  - LustLine Part 3 FAQs October, 2004
  - LustLine Part 4 Soil Gas Updates, Sept 2006
  - LustLine VI For Petroleum Hydrocarbons, Dec 2010
- Robin Davis' Articles on Bioattenuation:
  - Lustline #61 May 2009
  - LustLine #52 May 2006 (www.neiwpcc.org)

Forthcoming Sampling Guidance: ITRC PVI Toolkit



For a copy of this presentation with lecture notes go to:

www.handpmg.com, Presentations