

Evaluating the Impact of Methane in Soil Gas on the Potential for Vapor Intrusion of Petroleum Hydrocarbons

Methane from Biofuels – Webinar, NEIWPCC Wednesday, October 8 from 1:30 – 4:00 (EDT)

25 minutes

George DeVaull george.devaull@shell.com

Webinar Outline

1. Introduction

- An approach to evaluate the impact of methane in soil gas on the potential for vapor intrusion of petroleum hydrocarbons – George DeVaull, Shell Global Solutions US Inc.
- 3. Emergency response to spills Mark Toso, Minnesota PCA
 - a. How methane is formed in the subsurface using case studies of sites
 - **b.** Remediation, surface spills, and ecological impacts
- Recent research on ethanol blended fuel spills and potential for methane generation and transport – Bill Rixey, University of Houston

By way of Acknowledgement:

- Wilson, J. T., M. Toso, D. Mackay, N. de Sieyes, G. E. DeVaull, What's the Deal with Methane at LUST Spill Sites? Parts 1& 2: LUSTLine, #72, February 2013; #71, September 2012.
- Ma, J., W. G. Rixey, G. E. DeVaull, B. P. Stafford, P. J. J. Alvarez, Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a Plume of Dissolved Ethanol, Environ. Sci. Technol., 2012, 46, 6013–6019.
- Sihota, N.J., O. Singurindy, and K. U. Mayer, 2011. CO₂ efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer, Environ. Sci. Technol., 45:482-488.
- Sepich, J. E., Methane Soil Gas Identification and Mitigation, ASCE San Antonio, April 20, 2012.
- Eklund, B., Proposed Regulatory Framework for Evaluating the Methane Hazard due to Vapor Intrusion, EM Magazine, Air & Waste Management Asso., awma.org, February 2011, 10-14.

Overview: Potential Methane Issues

Potential Sources:

- Biogenic methane from organic sources
- Natural gas transmission and distribution systems
- Reservoirs and storage, coal, petroleum, natural gas

Representative Examples:

- Measurement of shallow methane in the course of a vapor intrusion investigation
- Risk evaluation of some motor fuels (>E20) for methane and vapor intrusion potential

- Determine how much methane is okay.
- Both concentration and flux (or flow) are
- important.

Biogenic Methane: What's the issue?

Biogenic methane generation – <u>makes gas</u>:

Example (with some steps missing):

ethanol (liquid) methane (gas) carbon dioxide (gas) $2 \text{ CH}_3\text{CH}_2\text{OH} \rightarrow 3 \text{ CH}_4 \uparrow + \text{CO}_2 \uparrow$

Similar for other organics, including petroleum

Compare to methane oxidation: can be equal volume or decrease (gas) (gas) (gas) (gas or liquid) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Methane – Scenarios / Conceptual Model

Focus Area Here: Shallow Soil Gas to Enclosure Migration

Methane Hazards:

Direct:

Flammability

- In enclosures; not within soil gas
- LFL (LEL) Lower Flammability Limit: 5.4% v/v in air (21% O₂)

Asphyxiation (O₂ displacement); same as some other gases (N₂, He, Ar, …)

PART 2

For methane toxicity criteria are higher than flammability criteria

Indirect:

Effect on other chemicals

- O₂ demand for biodegradable chemicals
- induced advection

Methane Flammability: Concentration and Flow (or Flux)

- Concentration
 - Within enclosure flammable > 5.4%v/v
 - In soil gas potentially flammable once mixed with air > 14.1%v/v
- Flux or Flow

KEY

POINT:

- Enclosure (crawlspace) > 5 to 95 L/min; 0.8 to 3.3 m/day
- Enclosure (residential) > 57 to 230 L/min ; 0.34 to 1.4 m/day
 - Flammability requires both high methane concentrations and high flow or flux.
- Values above for 100% LFL.
- 'Safety factors' (e.g. 10% LFL for human-occupied spaces) often applied.

Hazard Screening: Methane in Shallow Soils

Review / existing information: known risks & hazards of methane

Comparison to guidance on mine safety, natural gas distribution systems, municipal landfill gas migration, feedlots, methane seeps, regional ordinances

Table: coreaning aritaria					
Shallow Soil Gas	Indoor Air Concentration				
Concentration ^a	None Available <0.01%v/v 0.0		0.01 to <1.25%v/v	> 1.25%v/v	
<1.25 to <mark>5</mark> %v/v	No further action		No further action ^b	Immediately notify	
>5 to 30%v/v [°]	No further action unless ΔP >2 in. H ₂ O ^b			recommend	
> 30%v/v [°]	Collect indoor air data	Evaluate on cas	evacuate building		

Notes:

a) Shallow soil gas: Maximum methane soil gas value for area of building footprint.

b) Landowner or building owner/manager should identify indoor sources and reduce/control emissions.

If no sources are found, additional subsurface characterization and continued indoor air monitoring are recommended.

c) $\Delta P > 2$ in. water: The potential for pressure gradients to occur in the future at a given site should be considered.

Table based on Eklund (2011) and Sepich (2008)

Methane Soil Gas Hazard Screening: Interpretation

Other Comparisons / Notes / Examples

Guidance: California DTSC "manure"

A Guidance Prepared for the Evaluation of Biogenic Methane in Constructed Fills and Dairy Sites, California EPA, Department of Toxic Substances Control, March 28, 2012

San Diego – rescinded ordinance

1999. Methane discovered in San Diego housing developments; 2001. Ordinance imposed.

June 2002. MTRANS (Methane Transport Model)

April 2005. San Diego County repeals ordinance requiring methane gas testing on mass graded lots within the unincorporated areas of the County.

GET

- Soil Gas Criteria (<5%, <30%) overestimates potential enclosure risk</p>
 - Differential Pressure (2-in H₂O) okay for relatively impermeable caps (intact concrete, silt, clay); otherwise might need adjustment
- Other nessible entions:

Methane Detection: care needed in measurement

- Landfill Gas meters, handheld meters
 - 3.41um (nominal) absorption band
 - For methane
 - Responds to other hydrocarbon gasses
 - Also responds to ethanol
 - Carbon Filter Trap ?
 - In front of detector
 - Traps most hydrocarbons
 - Ethanol not sorbed by carbon

 Petroleum and ethanol also detected by IR gas meters!

Jewell, K., J. T. Wilson, Ground Water Monitoring & Remediation, 31, 2011, 82–94.

Soil Gas Modeling: can use a combination of

r	noth					
	Models: Gas Flow in Porous Media					
\land	\bigvee		Applicability:			
		Diffusion	• Low concentration, $X_i \ll 1$			
*	(Fick's law)	• Low advection, $u_{v,total} \ll D_{eff,i} / L$				
ase	lex xa	Advective-	• Low concentration, $X_i \ll 1$			
mp	Diffusion	• Specified advection, $u_{v,total}$ [from uncoupled flow estimate]				
Ľ	errors inc more co	Stefan- Maxwell	• Total concentration, $1 = \Sigma X_i$			
SIC			• Imposed flux constraint, $u_{v,total} = \Sigma u_i$			
STT6			• Low pressure gradient, $\Delta P \ll P$			
		(Dusty Cas)	• Fully coupled diffusive flux and viscous flux (pressure-driven)			
	"Dusty Gas"	• Strong gas / wall ('dust') interaction.				
\square	\bigvee	• X_i , mole	fraction (mole/mole) • $(R \cdot T/P)$, molar volume (m ³ /mole) •			
		$C_i = X_i / (R)$	$X_i/(K \cdot I/P)$, mole concentration (mole/m ³) • $u_{v,i} = (K \cdot I/P) \cdot N_i$,			
		Darcy flux (m ³ /m ² -hr) • N_i , molar flux (mole/m ² -hr) • $D_{eff,i}$, effective				
		diffusion coefficient (m ² /hr) • L, distance (m) • P, pressure (Pa)				

*errors increase for higher concentration, concentrations, and pressure gradients

Example: Field Data

<u>Model</u>

Solution of Stefan-Maxwell equations Unidirectional diffusion of (CO₂ + CH₄) in stagnant air (N₂ + O₂)

Thorstenson and Pollock (1989)

$$X_i(s) = 1 - (1 - X_i(s = 0)) \cdot \exp\left(-\frac{u_{v,i} \cdot x}{D_i}\right)$$

$$Pe_x = \frac{u_{v,i} \cdot x}{D_i}$$
 Peclet X_i mole fraction

<u>Data</u>

Vertical profile – methane in soil gas

Lundegard, et al., 2000

71% CH₄ + 23% CO₂ = 94% at depth

78% N_2 in air \rightarrow must have been displaced

Additional Parameter: Nitrogen Gas

- Low values of differential pressure are hard to measure
- The potential for significant advection may also be evaluated by measure of nitrogen (N₂) in soil gas.
 - Nitrogen is nearly conserved
 - Ensure the N₂ value is measured directly; or reasonably estimable by a balance of all of the other gases and vapors.

$$Pe_{L} = \frac{u_{v}}{D_{i}/L} = -\ln\left(\frac{X_{N_{2}}(at \ depth)}{X_{N_{2}}(at \ mosphere)}\right)$$

 $Pe_L < 1$; $X_{N_2}(at depth) > 0.29$ for diffusive flow

X-mole fraction • Pe_L -Peclet number

 u_v - Darcy velocity • L - depth • D_i - effective diffusion coefficient

14

1

Methane: in wet soils

Example 70% Methane at bottom of a (wet) capillary fringe

Peclet numbers Add (in layers):

 $\blacksquare Pe_{total} = Pe_{cap} + Pe_{vadose} = 1.2 (>1) \leftarrow advection-dominated$

Conclusions: Methane Flammability

In Soil Gas Screening:

- Methane Screening Concentrations in soil gas can be relatively high (5%, 30%) and still conservative [that is, overestimating potential flammability risk].
- Advective contribution
 - Flux can be high enough to generate a pressure gradient
 - Differential pressure criteria (2-in water) can be measurable under an intact cap (concrete, clay)
 - Measure of nitrogen deficit in subsurface soil gas can also indicate displacement / advection due to methane gas flow

- Acceptable methane screening values are high (>5%, > 30%.
 - Both concentration and flux (or flow) are important.

Potential effect of methane

On transport and degradation of other chemicals (benzene)

PART 2

Scenario:

Methane

- dominant oxygen sink
- dominant source of advection

Benzene

- Low levels
- Sand Soil
- Typical concrete foundation
- Source to foundation: 3m
- Apply :
 - Oxygen-Limited Aerobic Biodegradation'
 - With Methane Advection

Screening methods

- Exclusion Distances (source to foundation separation distances)
 - Examples: 6 ft dissolved phase source, 15 ft LNAPL source
 - EPA OUST Draft Guidance, reports http://www.epa.gov/oust/cat/pvi/
 - Lahvis et al., 2012: Vapor Intrusion Screening Criteria for Application at Petroleum UST Release Sites. Groundwater Monitoring and Remediation.
 - Developed from a field-measured data set which includes gasoline releases at up to 10% ethanol
 - Ethanol which can generate methane
 - These Exclusion Distances are valid for up to E10 (10% ethanol)

Modeling

Use:

- Advective-Diffusion Solution with Oxygen-limited Biodegradation
 - Derived algebraic solution for oxygen-limited aerobic biodegradation with imposed advection.
 - Very similar to 'BioVapor' model with imposed advection.

Impose additional constraints:

- Maximum 100%v/v soil gas sum
- Advection is due only to soil gas concentration gradients; imposes an upper bound advection from Stephan-Maxwell equation for singly advective diffusion (advecting methane, stagnant air)

Sensitivity Analysis

In Soil Gas Screening

- As an example, without advection –
- Use the same type of nomagram to interpret the effect of advection

For methane:

•Apply this type of analysis using one selected source depth (3 m) and a range of source advection rates

Plot on this slide: the source advection rate is zero.

- 3D: Abreu 2009: GWM&R
 - **& API Publ. 4555**
- Basement Scenario
- Matched Parameters
 - Except "Depth"

20

2

Model Results – Sensitivity Analysis

Effect of Methane Source on Benzene Attenuation Factor

Conclusions: Effect of methane on other chemicals

Effect of methane on benzene attenuation factor:

Still worried about effect of methane?

On transport of other biodegradable chemicals?

- Some vapor intrusion models can still be applicable
- e. g. BioVapor (<u>www.api.org</u>) : diffusion, oxygen-limited biodegradation
 - Include methane concentration in the source composition
 - Check that vapor transport is 'diffusion' dominated
 - that is, relatively low source concentration
 - If conceptual model matches the site conditions, and modeled indoor air estimates for constituents of concern are acceptable, should be okay.

Conclusions: Effect of methane on benzene

- Effect of oxygen demand is more significant than advection
 for biodegradable chemicals
 - Low (Total) Source concentration alone will 'screen' sites
- At higher methane source concentrations
 - High oxygen demand \rightarrow higher attenuation ratios
 - **Higher induced advection** \rightarrow higher attenuation ratios
 - Potential enclosure impacts may be greater than expected
- Need:
 - More estimates, more sensitivity evaluations

24

End

Thank you

Reserved slides follow

Methane: Modeled Scenarios

- Presence of methane indicates (biogenic) gas generation & potential for source advection
 - conceptual models illustrating the potential effects of advective velocity on soil vapor intrusion

Modeling: Soil gas flow

high concentration of methane in soil gas; possible induced

	General relationship	Binary mixture (one stagnant gas)	
Stefan- Maxwell	$-D_i \cdot \left(\frac{P}{R \cdot T}\right) \cdot \frac{dX_i}{ds} = N_i - X_i \cdot \sum N_i$	$\left(\frac{R \cdot T}{P}\right) \cdot N_{i[S-M]} = -\frac{D_i}{s} \cdot \ln\left(\frac{1 - X_i(s)}{1 - X_i(s=0)}\right)$	

 $u_{v,i} = (R \cdot T / P) \cdot N_i$, Darcy flux (m³/m²-hr) • (R \cdot T / P), molar volume (m³/mole)

 N_i , molar flux (mole/m²-hr) • X_i , mole fraction (mole/mole) • D_i , effective diffusion coefficient (m²/hr)

Advective-Diffusion Eq. – no concentration constraint

backup slide

Example: Field Data

- Water-well soil gas data sampling. Inficon Micro 3000 GC analysis.
- Data courtesy John Wilson(August 2013).
- For gas samples taken 30 to 40 min into purging:

				carbon	C2 to C6+	
	methane	oxygen	nitrogen	dioxide	(sum)	total
	%v/v	%v/v	%v/v	%v/v	%v/v	%v/v
MW-1	57.0	7.2	16.2	16.8	0.9	98.1
MW-2	65.2	1.3	5.1	20.3	3.2	95.1
EPA-1 / MW-9	50.4	1.2	20.5	19.9	1.1	93.2

• Oxygen is low in MW-2 & MW-9; moderate in MW-1.

• Nitrogen (5.1 to 20.5 %v/v) is significantly less than atmospheric (79%v/v) throughout. This indicates displacement of nearly conserved atmospheric gases, probably by methane gas.

• The nitrogen value has been confirmed to be through calibrated slide analysis and not estimated by difference (which is done by some labs r methods).

•The total vapors including gases and vapors sum to 93.2 to 98.1 % v/v. This is marginally lower than 100%, but nearly complete.

Modeling: Implementation

- Binary non-reactive gas flow → mathematical solution
- Anything more complex → numerical solution Favorable comparison:

MIN3P-Dusty (Molins and Mayer, 2007) to Thorstenson and Pollock (1989)

backup slide

Acknowledgement MIN3P Dusty : Parisa Jourabchi (Golder), Uli Mayer (UBC)

Methane emission flux - survey

- **<u>Potential</u>** Identified Issues from Consolidated survey:
 - Active Municipal Landfills, Manure, Ethanol, Ethanol/Petroleum, Petroleum

I. Flammability: Methane Concentration

- **5.4%** methane in air is flammable (LFL)
 - Need at least 14.1% methane in soil gas (the rest: N_2 , CO_2 , etc.) to m with air (21% O_2) to yield a flammable mix 22

- Safety factors' (10% LFL for occupied
- Soli gas is not flammable; Flame is 'quenched' in in the soil matrix

KEY

POINT:

backup slide

Screening methods

presume prior site assessment, characterization, and evaluation

A developed and validated conceptual model:

Sources:

- Buried organic matter
- Municipal landfills, leachate
- Released petroleum, ethanol, organic liquids
- Coal deposits, Peat soils
- Made land, fill areas
- Swamp land, Rice fields
- Septic tanks, Drainage fields
- Livestock containment, Manure pits
- Sewage and sewer gas
- Gas transmission and distribution lines

Factors:

- Source volume
- Gas generation rates
- Biodegradation
- Composition
- Gases present (CH₄, CO₂, ...)
- VOCs present

Pathway Linkages:

- Air connected soils
- Capping, Foundations
- Vapor diffusion
- Gas advection
- Sewers, Vents
- Gas ebullition
- On-site, off-site
- **Sumps, Dry wells, Vaults**
- Foundation cracks, Utility pemetrations

Factors:

- Diffusion rates, Permeability
- Wet/dry soils
- Preferential flow
- Natural and man-made geology, Hydrogeology
- Atmospheric pressure changes
- Rising/falling water tables
- Soil gas venting
- Dewatering
- Daving Hardscand

Receptors:

- Occupied enclosures
- Crawlspaces
- Basements
- **Current and future land use**
- Soil flora, Soil fauna

Factors:

- □ Air exchange rates
- Residential / commercial
- Background concentrations
- Enclosure emission sources
- Hazards, exposure
- Direct toxicity
- **G** Flammability
- Oxygen displacement
- Acute, chronic

backup slide

Differential Pressure Criteria

scenario: crawlspace specified methane flux : 0.34 m / day

II. Flammability: Methane Flux (or Flow)

- Estimated methane fluxes (and flows) for potential flammability:
 - Approximately ~ 0.33 to 3.3 m/day to reach 5.4%v/v methane in enclosure
 - Advection required (relative to diffusion) at these flux velocities
 - Lower ranges with applied safety factors; higher ranges if 'crack' flow not entire toundation area

Parameter definition and selection

1-D geometry modeled

For each layer (foundation, soil):

	LAYERS:	
1-layer	$X_i(s = L) = 1 - (1 - X_i(s = 0)) \cdot \exp\left(-\frac{u_{v,i} \cdot L}{D_i}\right)$	
2-layer	$X_{i}(L_{2}) = 1 - \left(1 - X_{i}(s=0)\right) \cdot \exp\left(-\left(\frac{u_{v,i} \cdot L_{1}}{D_{i,1}} + \frac{u_{v,i} \cdot L_{2}}{D_{i,2}}\right)\right)$	
<i>u_{v.i}</i> , Darcy f Peclet numb diffusio	$\begin{aligned} &\text{lux} (\text{m}^3/\text{m}^2-\text{hr}) \bullet L, \text{ depth (m)} \bullet Pe_L = u_{v,i} \cdot L/D_i, \\ &\text{per } \bullet X_i, \text{ mole fraction (mole/mole)} \bullet D_i, \text{ effective} \\ &\text{n coefficient (m^2/\text{hr})} \bullet i, \text{ mobile gas component} \end{aligned}$	
Within e	ach layer, an area-weighted average:	slide
	AREA : 2 sub-areas A_4 A_B	

A		
diffusion coefficient $D_{i,avg} = \eta \cdot D_{i,A} + (1-\eta) \cdot D_{i,B}$		A_B
gas permeability	$k_{v,i,avg} = \eta \cdot k_{v,A} + (1 - \eta) \cdot k_{v,B}$	
Area weig		

Model Scenario: Shallow Methane

Steady-state unidirectional diffusion in a binary gas mixture

Layered Compartments (one-dimensional):

Enclosure

- Mixing and dilution
- Stagnant gases: Air (N₂, O₂, Ar)

backup slide

1

- Foundation (or cap)
 - Specified resistance to flow [range]
 - diffusion coefficient, permeability
- Soil Layer
 - Advection, diffusion, no (bio)degradation
 - Sand [diffusion coefficient, high permeability]

Source

Generation (CH₄, CO₂) at depth; upward flux specified (worst-case for 36 flammability is all methane)

Methane Hazard: modeled results

Key point:

 Soil gas concentration criteria (<5 & <30%) overestimates

potential risk [below indicated depths]

Differential Pressure

- 2-in H₂O differential pressure criteria
 - Presumes pneumatic connection between soil and enclosure
 - Requires a relatively impervious cap
 - From calculated pressure drop
 - 15 cm capping material

backup slide

Key point:

• Differential pressure criteria require capped surface (concrete, silt, clay); may adjust downward for more permeable surfaces