Restoring Alewife to the Bronx River, NYC

March 4, 2020
Katie Friedman
Northeast Aquatic Biologists Conference

NYC Parks
Division of Forestry, Horticulture and Natural Resources
New York City Land Cover

<table>
<thead>
<tr>
<th>GREY 59.5%</th>
<th>GREEN 40.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>114,200 acres</td>
<td>55,360 acres</td>
</tr>
<tr>
<td>BUILT</td>
<td>LANDSCAPED 28.9%</td>
</tr>
<tr>
<td>22,220 acres</td>
<td>NATURAL 11.6%</td>
</tr>
</tbody>
</table>

Source: Natural Areas Conservancy Ecological Cover Type Map Level 2, 2017.
New York City Natural Areas

NYC Parks
Natural Areas
Nature in NYC Parks

- 1,444 acres grasslands
- 5,000 acres wetland
- 60 miles streams
- 3,500+ volunteers
- 2,479 bioswales
- 7,300 acres forest
The Bronx River

- Bronx River originates near Kensico Reservoir in Valhalla, NY
- Travels south for 23 miles, flows into western Long Island Sound
- Eight miles of the River flows through one of the most urban and diverse areas in the country—The Bronx:
 - 1.45+ million people
 - 42 square miles, ~25% open space

Source: Westchester County Department of Planning and Bronx River Alliance
History of Restoration on the Bronx River

- 1974: Local activists formed Bronx River Restoration Group
- 2001: Bronx River Alliance formed
- 2000s: WCS-NOAA funded ecological restoration, education, and recreation projects
- 2005: Bronx Forest floodplain and stream restored, including boardwalks along Bronx River
- 2007: Oyster Reef Pilot Project began
- 2010: Bronx River Intermunicipal Watershed Plan produced
- Today: 1,500 paddlers, 2,000 students, and 500 stewards engaged annually

Left: Restoration and community engagement efforts. Right: Bronx River Blueway Map, a National Water Trail.
River Herring: Alewife (*Alosa pseudoharengus*) and Blueback Herring (*Alosa aestivalis*)

- Anadromous fish (spawn in freshwater then migrate to the ocean)
- Reach sexual maturity after 3-6 years and return to natal waters to spawn
- Iteroparous (repeat spawning)
- Important forage fish for a range of species including commercial and recreational fish and birds of prey
- Cycle nutrients between freshwater and saltwater ecosystems
- Once plentiful in rivers and tributaries in the northeast – streams described as “running silver”
- Threats include habitat alteration (dams), habitat degradation (pollution), bycatch (Atlantic Herring fishery)

Top: River herring captured during electroshocking. Bottom: Osprey catching river herring as prey (credit: Vic Zigmont).
Diadromous Fish Restoration Efforts

Project Goals

• Reconnect access to spawning habitat
• Jumpstart native population & establish self-sustaining fish run
• Engage community partners in community-based science monitoring

Timeline

• 1600s: Man-made dams limit upstream migration
• 2004: Fish restoration feasibility study
• 2006: First Alewife fish stocking
• 2015: River herring and eel fishways opened at first dam, monitoring began
• 2017: First river herring observed using fishway
• 2017-present: Annual fish stocking and monitoring

Top: E. 182nd St. Dam pre-fishway installation. Bottom: Underwater video footage of river herring using the fishway to migrate upstream.
The First Barrier:
East 182nd Street Dam

East 182nd St. Dam with Alaska steep-pass fishway and eel ladder installed in 2015.
East 182nd St. Dam Fishway

East 182nd St. Dam, before the fishway was installed.

Construction of the East 182nd St. Dam fishway.
Fishway Monitoring Equipment

Metal fyke gate guides fish to swim through a monitoring box equipped with an underwater video camera and fish counter equipment.
Fishway and Eel Ladder Use 2015-2019

312 River herring
> 1,300 American eel
161 Sunfish spp.

69 Largemouth bass
27 White sucker
19 Common carp
13 Brown bullhead

Total Fish > 1,900
Annual Fishway Use

Note: Low river herring numbers in 2019 may have been a regional trend. Herring runs in Long Island Sound tributaries were low.
2018 Fishway Use
April 4th – June 30th

Note: Gaps in data due to video camera/fish counter malfunction.
Annual Fish Stocking Since 2017

- Approximately 400 river herring are collected from Bride’s Brook, CT, transported, and stocked in the Bronx River annually

- Partnership with Connecticut Dept. of Energy & Environmental Protection (CTDEEP), Wildlife Conservation Society (WCS), Bronx River Alliance (BxRA)

- Stocked in spawning habitat in impoundment between E. 182nd St. Dam and Bronx Zoo Double Dams

Fish are released from stocking tank via hose into the Bronx River.
Post-Fish Stocking Monitoring

Objectives:
• Evaluate success of stocking
• Monitor presence of adults and juveniles post stocking

2018 Results:
• Four dead Alewife recovered
• 668 potential juvenile “pops” (difficult to verify)
• Zero juveniles captured

2019 Results:
• Zero dead Alewife observed
• Zero juveniles captured

2020 Planned Monitoring:
• Visual surveys via canoe & underwater ROV
• eDNA sampling upstream & downstream of stocking area and fishway
• Evaluate crowd sourcing video data

Upstream Impediments: Bronx Zoo & Stone Mill Dams

Bronx Zoo Double Dams

Stone Mill Dam
Bronx Zoo Double Dams Fish Passage Assessment

Project Goals

• Assess dam removal feasibility
• Conduct alternatives analysis (engineered fishway vs. dam removal)
• Choose a fish passage alternative and move forward either with updated fishway designs or a dam removal Scope of Work

Project Team

• NYC Parks (lead)
• HDR & Princeton Hydro (consultants)
• Wildlife Conservation Society & Bronx River Alliance (stakeholders)
Task 1: Dam Removal Feasibility Assessment

Considerations

• Dam condition & safety
• Sediment quantity, quality, and management
• Impacts to utilities and infrastructure
 o Upstream and downstream bridges
 o Zoo exhibits & operations
• Ecological impacts
 o Existing wetlands
 o Tree removals
 o Spawning habitat
• Aesthetics
• Costs

Top: Sediment depth measurements above the eastern spillway. Bottom: Upstream floodplain.
Task 2: Updated Fishway Cost Estimate

Engineered Fishway Design

Engineered fishway rendering by Milone & MacBroom (MMI). Costs estimate anticipated to be ~$5M.
Task 3: Alternatives Analysis

Considerations

• Zoo operations & aesthetics
 o Bison exhibit, visitor entrance

• Constructability and cost

• Passage efficiency
 o Bunt et al (2011) found steeppass fishways to be on average 51% effective at passing fish
 ▪ “The vast majority of fishway structures do not effectively mitigate the effects of barriers…”

• Ecological impacts (eg. spawning grounds & wetlands)

• Permitting
 o Cautious regulatory environment for dam removal in New York State

• Management and risk
 o Dam removal requires no operational costs post-construction

Top: Flooding at the Bronx Zoo Double Dams in 2007. Bottom: Cross section of engineered fishway requiring bedrock excavation 8 feet in depth
Task 4: Based on Chosen Fish Passage Alternative

Option 1: Update fishway designs

• Apply improvements or modifications to update engineered fishway designs
• Update contract documents at 100% design

Option 2: Dam Removal Scope of Work

• Develop dam removal scope of work that includes:
 o Preparing final design and construction documents for dam removal
 o Preparing cost estimates for construction & construction management
 o Securing permits and approvals

Canoeing at the base of the Bronx Zoo Double Dams in search of juvenile river herring (2019).
Next Steps

Design Contract
- Two-year contract
- Sediment sampling Spring 2020
- Tree assessment Spring/Summer 2020

Construction Funding
- Funds in-hand:
 - $1,500,000 from NYSDEC WQIP Grant Program
 - $250,000 from Bronx Borough President (funding the design contract)
- Fishway costs >$4M, and dam removal will likely be more expensive
- Future partnership with USACE through Hudson Raritan Estuary Ecosystem Restoration Program
 - Cost share: Fed 65%, Local 35%
 - Earliest construction 2025

Conclusions

- Our efforts will continue to restore river herring populations in the Bronx River within one of the most densely populated areas of NYC
- Restoring connectivity upstream is the next step in establishing a native, self-sustaining herring run
- The first dam removal feasibility study in NYC will provide a wealth of information to inform future restoration practices
- We look forward to collaborating with restoration practitioners and aquatic biologists across the Northeast coast on best practices & lessons learned!

Underwater video footage of stocked Alewife in the Bronx River (2019). Courtesy of the Jake Labelle, WCS.
Questions?

Katie Friedman, Aquatic Ecologist, NYC Parks

katie.friedman@parks.nyc.gov, 212-360-1429