Efficacy of "Eco-Toilet" Technologies for the Reduction of Nitrogen and Phosphorus Inputs into Groundwater; A Falmouth, MA Technology Study

Presentation by: Erika Woods, RS Senior Environmental Specialist/ Deputy Director, BCDHE

A Special thank you to Maureen Thomas, Water Resource Specialist at the Buzzards Bay Coalition for the use of slides relating to the West Falmouth Harbor Nitrogen-Reducing Septic System Demonstration Project buzzards

FALMOUTH CWMP

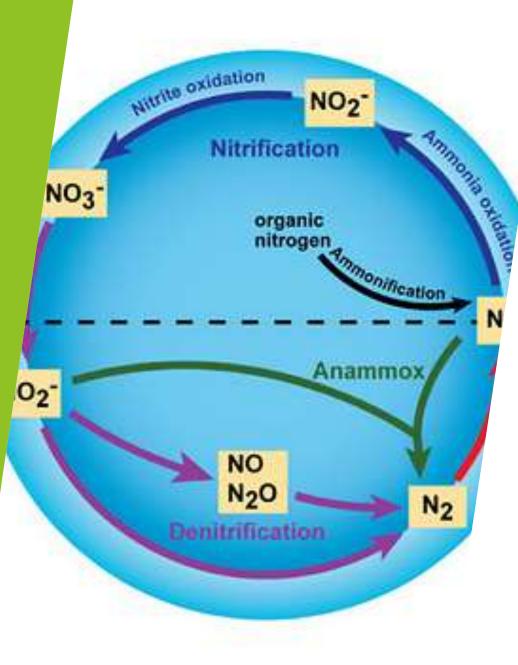
Eco-Toilet Project & West Falmouth I/A Demonstration

Falmouth Eco-Toilet Project

- Falmouth, as part of CWMP, looking to assess the efficacy of different eco-toilet options
- Participants given financial incentives to participate in program
 - Offered \$5,000 towards installation of technology plus septic pump-out
 - Opportunity, in certain areas, to avoid paying betterment for town sewer (approx. \$17,000)

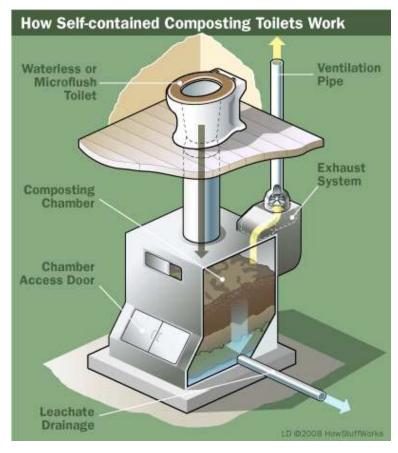
About the program:

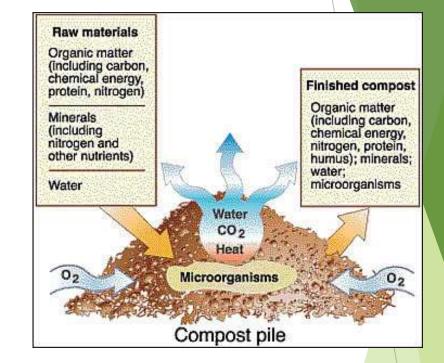
- Program: Followed 11 test sites
 - $\blacktriangleright \text{ Total N} = \text{TKN} + \text{NO}_2 + \text{NO}_3$
 - Total P
- Technologies employed by participants:
 - Dubbletten Urine Diversion toilet
 - Sun Mar self contained unit
 - Phoenix Composting
 - ► Full Circle


Results assumptions

Water use

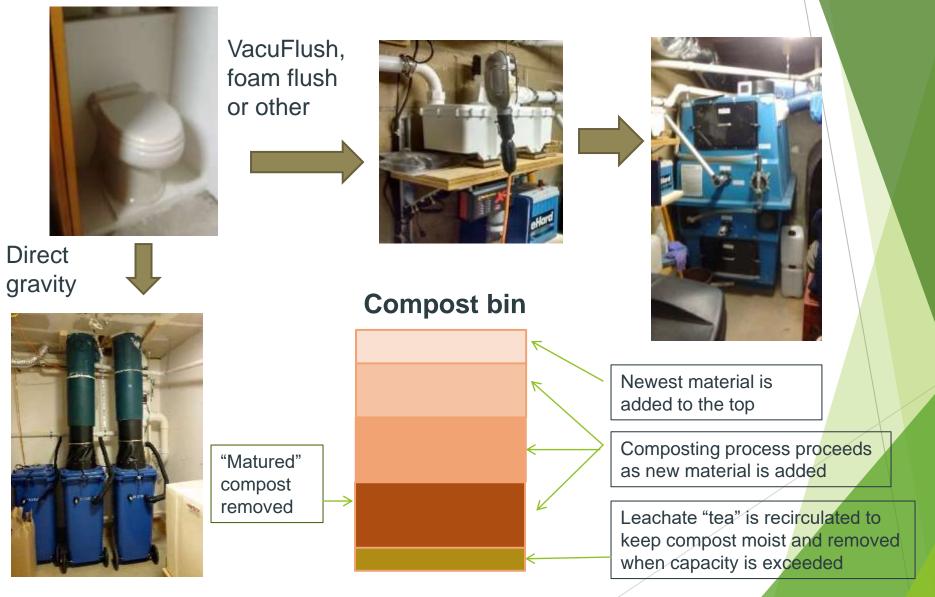
- Properties with no pre-installation sampling
- Properties with erratic water use readings
- Assumed 20% water use reduction from 55 gpd/person to 44 gpd/person
 - Gallons based on DEP Title 5
 - Percent reduction based on this study and EPA study showing toilets account for approximately 30% of household flow


5


Results assumptions

Total nitrogen and total phosphorus

- Some properties with no pre-installation sampling
- Some pre-installation samples were extremely high
- Very few studies demonstrating typical residential effluent levels of TN & TP
- Lowe, K.S. et al. "Influent constituent characteristics of the modern waste stream from single sources." Water Environment Research Foundation, 2009.
 - Mean values of all sites: 64 mg/L TN and 10.3 mg/L TP used for most sites with no preinstallation samples
 - Maximum values of all sites: 124 mg/L TN and 39.5 mg/L TP used for sites with abnormally high preinstallation samples


Example of a composting toilet <http://home.howstuffworks.com/green-living/composting-toilet1.htm>

• Need regular "stirring" and monitoring of liquid levels and oxygen supply

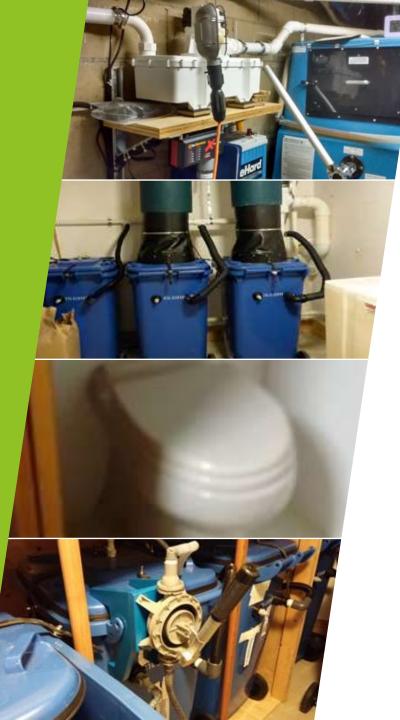
7

4/12/2019

ESE DIRECT

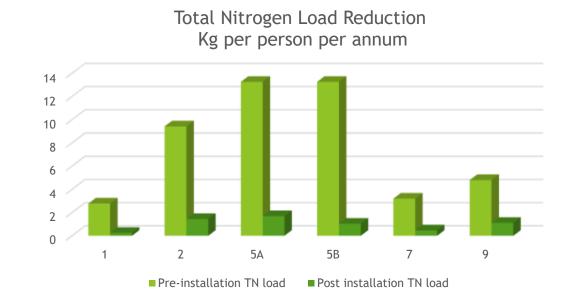
B 116 01042

It has been estimated that only 17 % N volatilizes from compost under ideal conditions. Reported losses range from 50%-94%


Aeration

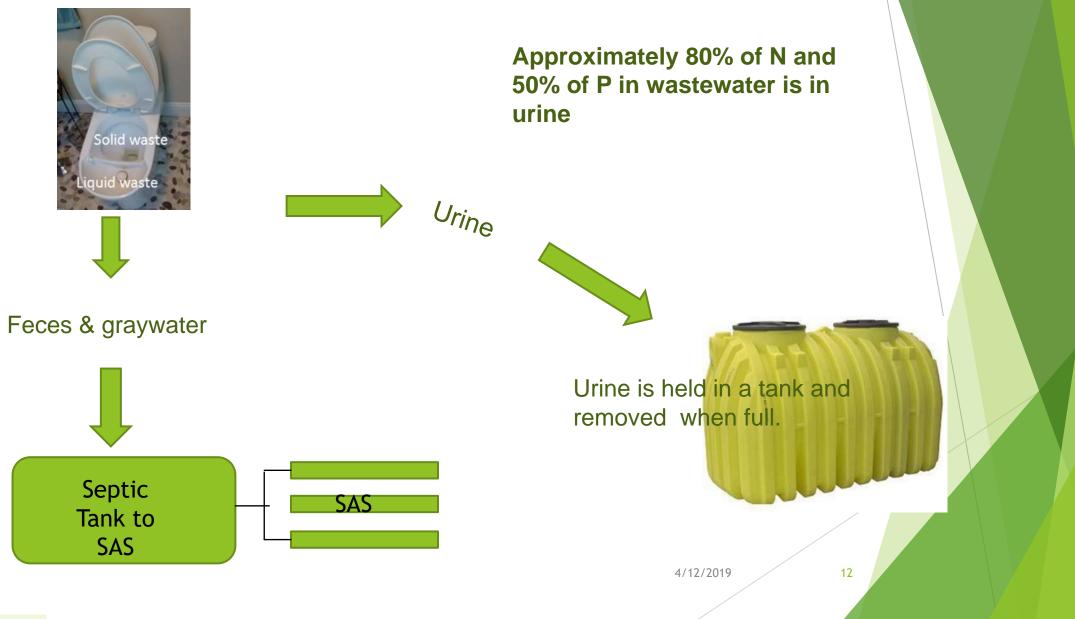
Approximately 87% of N & P are removed in compost and volatilization/ evaporation combined

Approximately 13 % of N & P are removed in the leachate "tea".

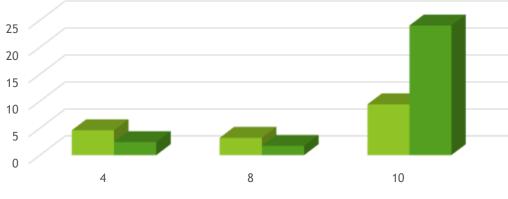

4/12/2019

- Five properties participated using composting toilets only
 - Case Study #1- 1 gravity toilet & 1 vacuflush toilets- 2 adult occupants
 - Case Study #2- 1 composting toilet-2 adult occupants
 - Case Study #5- self contained composting unit- 1 household occupant
 - Case Study #7- 2 vacu-flush toilets- 2 adult occupants
 - Case Study #9- gravity toilet- installation pre-dates this program- 2 adult occupants and 2 children

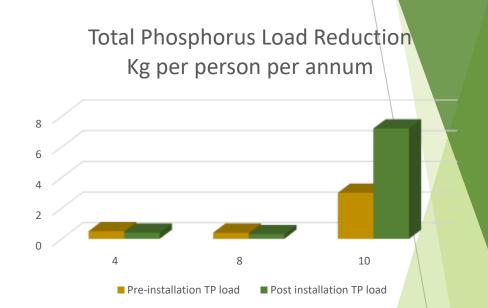
10


Composting toilet results

Total Phosphorus Load Reduction Kg per person per annum 3 2.5 2 1.5 0.5 0 5A 5B 9 2 7 1 Post installation TP load Pre-installation TP load


4/12/2019

Urine diversion



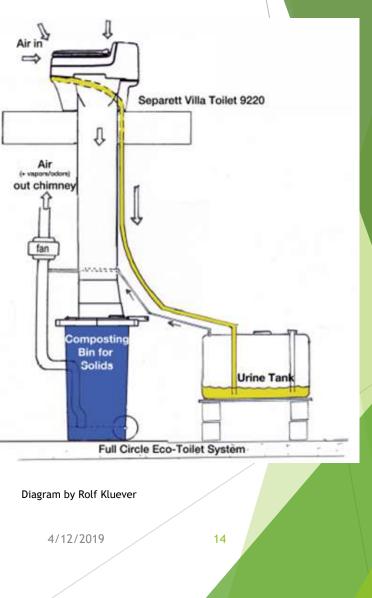
Urine diversion results

Total Nitrogen Load Reduction Kg per person per annum

Three properties participated using urine diversion toilets only

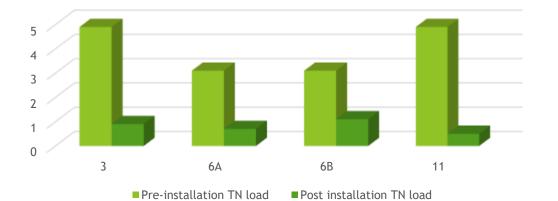
- Case Study #4- 2 adult occupants
- Case Study #8 2 adult & 2 child occupants

Case Study #10 - initially 2 adults occupants, increased to 4 part way through study

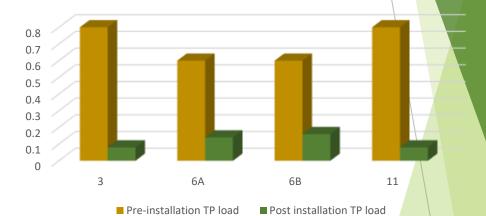

4/12/2019

13

Multiple technologies


Used combinations of composting toilets, and urine diversion toilets or toilet seats

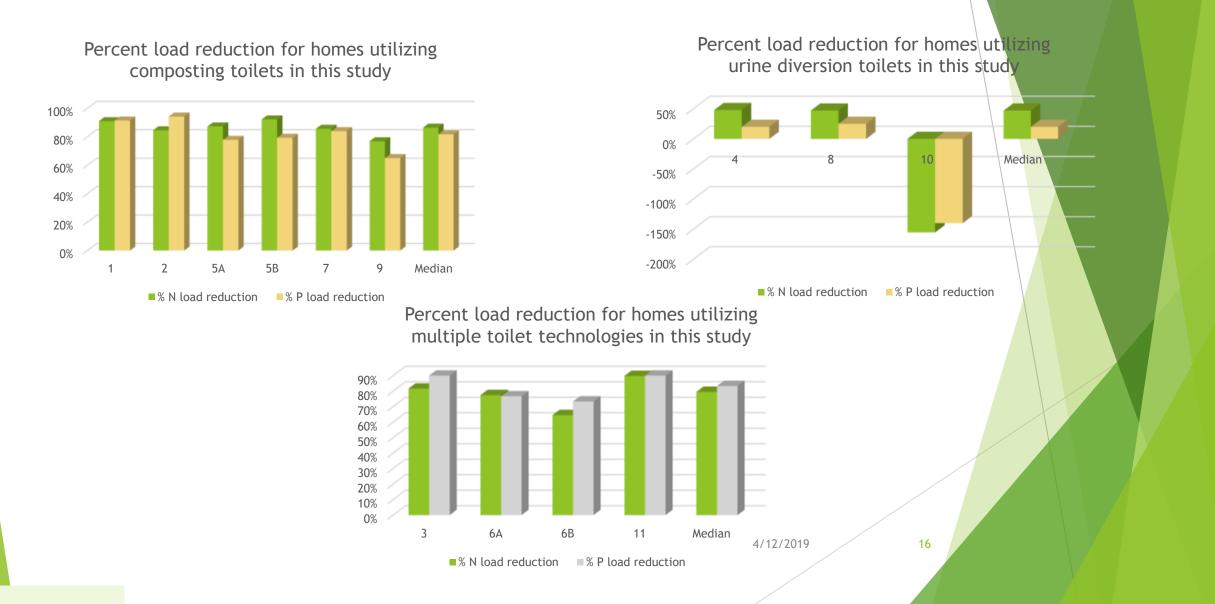
- Case study #3:
 - Composting toilet installed on lower level
 - Urine diversion toilet installed in upper level bathroom (rarely used) Solids discharged to septic system
- Case study #6 & #11:
 - All solids sent to compost bin
 - Urine diversion seat to redirect urine to collection tank



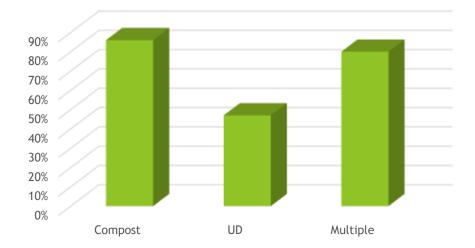
Multiple technology results

Total Nitrogen Load Reduction Kg per person per annum

Total Phosphorus Load Reduction Kg per person per annum

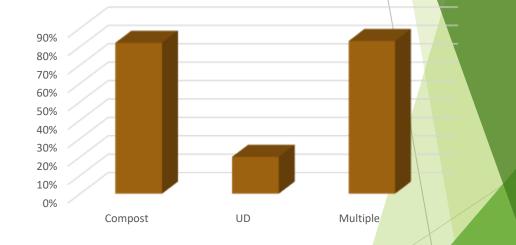

15

Three properties participated using a combination composting and urine diversion technology


- Case Study #3 2 adult and 2 child occupants
- Case Study #6 2 adult occupants
- Case Study #11 2 adult occupants

4/12/2019

Percent load reduction for all properties



Side by side load reduction

Median % TN Reduction by Technology

Median % TP Reduction by Technology

17

4/12/2019

Technology limitations

- Learning curve for new users and guests
- Social acceptance
- How to dispose of Urine, compost and compost toilet effluent
- Specific to UD
 - Difficult to "aim" properly
 - Urine ~95% water- High cost of collection, storage and transportation
 - High rates of direct application of urine thought to increase salinity and conductivity in the soils
 - Difficult to keep clean due to low water flow

4/12/2019

Technology limitations

Specific to composting toilets and multiple technology situation

- Proper operation is key to success
 - Proper aeration
 - Moisture content
 - Proper temperature
 - Temperatures >50°C- 56°C(122°F- 133°F) for up to 3 days to kill pathogens
 - Flies and gnats
 - Back up battery for fan during power outage

Study limitations

- Sample locations variable- D-box not always accessible
- Takes time for septic tank to fill in order to sample
- Water meter readings not an accurate indication of usage-affected by irrigation etc.
- Pre-install numbers not known for some properties
 - Limited research has been done on constituents of wastewater
- Efficiency affected by knowledge and attentiveness of user/ operator
- Small sample size- 11 participants
 - 2 already had technology prior to study

Materials disposal

- Urine: use for fertilizer
 - Cost of transportation- 95% water
 - Urine generally sterile but may be contaminated with feces
 - Contains pharmaceuticals
- Rich Earth Institute- Vermont doing research
- Compost toilet effluent- (CTE)- AKA tea
 - Sent samples to Maine School of Composting
 - CTE- 98 % water
 - Added to 3 different feedstock for compost that are available on Cape
 - Oak leaves, horse bedding, wood shavings
 - Not enough nitrogen

21

Participant feedback

- Overall favorable
- One case cost to replace complete system was avoided (~>\$15000)
- Some "hands on" maintenance required.
- Odor not an issue as long as fan was in operation- installation of battery suggested in case of power outage
- Hard to use & clean
- Social acceptance ?

West Falmouth Harbor Nitrogen-Reducing Septic System Demonstration Project

- Upgrade 30 existing septic systems within 300 feet of MHW of the harbor to nitrogenreducing systems
- Use best available technologies that meet 12 mg/L total nitrogen removal or less
- Provide \$10,000 subsidies to Phase I & \$7,500 for Phase II homeowner volunteers
- Evaluate total costs & implementation logistics
- Monitor & report results

Bay Coalition

🌠 Map prepared by: Buzzards Bay National Estuary Program, 2870 Cranberry Highway, East Wareham, MA 02538. www.buzzardsbay.org. March 10, 2015

Qualifying Technologies

Nitrogen-reducing technologies meeting 12 mg/L TN

AdvanTex AX20RT	Layered Soil Treatment Area
Amphidrome-SBR	Nitrex
Biobarrier MBR	NitROE/SanTOE
Bioclere	NJUN
Blackwater	RUCK
BUSSE Green Tech	Hydro-Kinetic
Eliminite	Waterloo Biofilter
GPC	SepticNET
Hoot	SeptiTech

Monitoring Results

- Nitrogen-reduction goal of at least 67%
- Phase I & II median total nitrogen-reduction 76%
 - Blackwaters 59%
 - Eliminites 78%
 - ► Hoots 81%
 - Layer Cake 90%
 - **Fast 43**%

Cost considerations

UD Technology

Installation cost of ~ 500 gallon exterior tank- or smaller tank to be emptied more frequently

- Installing/ Replacing fixtures
- Re-routing plumbing
- Cost of urine removal (every 1-2 years based on use)
- Composting Technology
 - Installing/ replacing fixtures
 - Installation of storage facilities
 - Electricity for fan- backup battery
 - Compost removal cost

Cost considerations

Centralized wastewater treatment

High collection cost due to scattered

population centers

Economies of scale

- I/A Technology
 - Efficiency tied to proper operation
 - Installation cost complete system
 - Annual O&M cost (Variable depending on town requirements)

Implementation Costs

AVERAGE COST ITEM RANGE COST Equipment \$8,437 \$4,146-\$10,625 (denitrification tanks) Engineering \$2,620 \$606-\$4,200 Installation (adding a nitrogen-reducing \$11,096 \$10,600-\$15,350 system to an existing Title 5 system) Installation \$20,675 (full upgrade from \$17,720-\$25,600 a cesspool) Landscaping \$2,142.97 VARIABLE

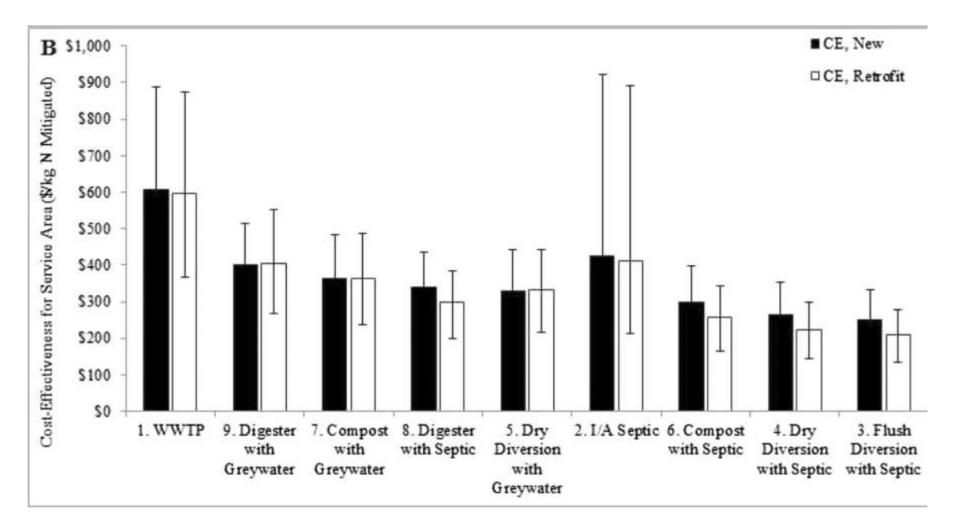
Operation, Maintenance, & Monitoring Costs

System	O&M	Sampling (BCDHE)	Required Sampling Frequency Year Round / Seasonal	
Blackwater	\$400/year	\$52/month	N/A	Once/Year
Eliminite (pilot)	\$1,000/ye ar	\$117/month	Year 1 - monthly Year 2 - quarterly	Year 1 - 3x/Season Year 2 - 3x/Season
Fast	\$250/year	\$52/month	4x/Year	2x/Season
Hoot	\$350/year	\$52/month	2x/Year	2x/Season
NitROE (pilot)	\$1,000/ye ar	\$117/month	Year 1 - monthly Year 2 - quarterly	Year 1 - 3x/Season Year 2 - 3x/Season
Perc-Rite	\$250/year	\$52/month	Once/Year	Once/Year

Lessons

- West Falmouth homeowners care about water quality & want to participate in restoration
- Neighborhood outreach is critical to success
- Cost, not technology, is the main concern for homeowners
- Upgrading on-site septic systems is not a one-size-fitsall project
- Disruption during installation can be minimized & systems can fit nicely buzzards sting landscaping

COALITION


Keys to Success

- Collaboration
- Funding
- Neighborhood Advocacy

buzzards

COALITION

Results

Cost-effectiveness of nitrogen mitigation by alternative household wastewater management technologies AlisonWood^aMichaelBlackhurst^bTroyHawkins^cXiaoboXue^dNicholasAshbolt^eJayGarland <u>Journal of Environmental Management</u> <u>Volume 150</u>, 1 March 2015, Pages 344-354

Project partners:

Town of Falmouth

Buzzards Bay Coalition

BCDHE

West Falmouth Village Association

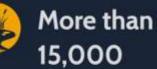
Funding from US EPA grant through Southeast New England Coastal Watershed Program

Cape Cod Commission

35

THE FACTS

9 billion pounds


Amount of chemical fertilizer that could be replaced with the urine Americans produce each year.

320 pounds

Amount of wheat that could be grown in a year with the fertilizer from one adult's urine.

Approximate volume of urine an adult produces each year.

Water bodies in the US impaired due to nitrogen and phosphorous pollution.

80 percent

Portion of the nitrogen and phosphorous pollution in wastewater caused by human waste.

drinkable water we

use each year to

flush toilets.

10101 4000 gallons

> Amount of water you could save per year by diverting urine for fertilizer.

> > +/ IZ/ ZU I 3

http://richearthinstitute.or

Increase in phosphorus fertilizer price between 1993 and 2013.

QUESTIONS??

ERIKA.WOODS@BARNSTABLECOUNTY.ORG 508-375-6620

4/12/2019

37