The Effectiveness of Layering a Sand-Sawdust Layer in a Soil Absorption System for the Removal of Nitrogen from Onsite Septic Systems in Northern Climates

George Heufelder Barnstable County Department of Health and Environment Massachusetts Alternative Septic System Test Center

Collaborative Effort

- Massachusetts Alternative Septic System Test Center
- Damann L. Anderson, P.E., a researcher of passive nitrogen removal systems for the State of Florida Onsite Sewage Nitrogen Reduction Study (FOSNRS);
- George Loomis, an onsite septic system specialist and published author from the University of Rhode Island;
- Dr. Will Robertson of the University of Waterloo;
- Jose Amador, a soil scientist at the University of Rhode Island;
- John Eliasson with the Wastewater Management Section of Washington State Department of Health's Division of Environmental Public Health
- More recently, researchers at Stony Brook University, NY

Pick your map

DEFINING CLIMATE

Project Genesis

The search for a sustainable nonproprietary means to remove nitrogen in onsite septic systems leads to...

Cellulose-based denitrification research being done

- Woodchip barriers in agricultural settings
- State of Florida (Florida Onsite Septic System Nitrogen Removal)
- Waterloo Canada (W.D. Robertson et. al)
- Washington State
- Others

REVIEW OF DEMONSTRATION PROJECTS

TWO DESIGN CHARRETTES

NUMEROUS DISCUSSIONS WITH PRACTITIONERS

Three feasible designs emerged

EXTENSIVE LITERATURE SEARCHES

Design 1 of Three Basic Designs The containment liner provided a saturated area that held water and occluded oxygen

Design 2 of Three Basic Designs

The container provided a saturated area that held water and occluded oxygen

Design 3 of Three Basic Designs

Simple layering of sawdust/sand mix – no secondary soil absorption area.

Denitrification is facilitated by a layer of sand mixed with sawdust placed below the nitrification layer

Design 1 & 2 require an addition disposal site SO.....

Design 3 meets the Einstein Principle

"Everything should be made as simple as possible, but not simpler"

keeping it Simple

TOPSOIL

LOW PRESSURE DISTRIBUTION OF STEVARSAND NITRIFICATION LAYER18"SAND/SAWDUST DENITRIFICATION LAYER18"NATIVE SOIL

Attempt #1 – Hedging our bets with a little silt

Place denitrification layer material (sawdust-sand-silt mix)

FUNDAL

Sawdust sand-silt

mix

"Marry" denitrification layer material to nitrification material layer

HYUNDAI

Low-pressure distribution piping placed

Field area levelled and made ready for distribution piping

Grass planted over soil treatment area

Final grade over soil treatment area

Results from simple layered system using silt mixed with sand/sawdust for denitrification layer

(Modification of Robertson, University of Waterloo)

Effect of temperature/season on performance

One step simpler

ASTM C-33

Using standard fill-sand mixed

with sawdust (for the denitrification layer)

ATTEMPT #2 Simple layered system (no liner) Profile

port

Lysimeter

port

Sand (nitrification layer)placement

Sand:Sawdust (denitrification) Layer

Results from simple layered system using standard sand mixed with sawdust for denitrification layer

Effect of Temperature

Effect of Temperature

Temperature of Raw Wastewater

---- Channel Influent - Temp

What about the Real World ?

vs. Test Center Studies

Configurations installed generally were installed with a control portion for comparison.

System 1 — Residential – YR – 3 persons 212 GPD

System 1 — Residential – YR – 3 persons 212 GPD

Residence - Woods Hole 1-3 residents

Treated Portion of Soil Absorption System

Un-Treated (Control) Portion of Soil Absorption System not installed at this location

Treated Portion of Soil Absorption System

Un-Treated (Control) Portion of Soil Absorption System

The Connecticut Experiment

- DPW Garage
- Expected high nitrogen concentration
- Close to seasonal high groundwater

Treated Portion of Soil Absorption System

Un-Treated (Control) Portion of Soil Absorption System

Un-Treated (Control) Portion of Soil Absorption System

Treated Portion of Soil Absorption System

Treated Portion of Soil Absorption System

Conclusions

• Simple layering of an organic material like cellulose may offer a simple, sustainable and relatively inexpensive way to achieve nitrogen removal from onsite septic systems. Research in this area should continue to determine all the factors controlling the performance of the systems.

Remaining Questions

- Is it worth it \$\$\$\$?
- How long will the carbon last?
- What are all the possible negative impacts?
- Do they outweigh the positive impacts?

Some final thoughts

- Shallow drainfields used in these systems enhance removal of contaminants of emerging concern.
- Recent research suggests that wood-based denitrification may also reduce endocrine disrupting compounds.

Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater. Ayodeji O. Falade Leonard V. Mabinya Anthony I. Okoh Uchechukwu U. Nwodo First published: 17 October 2018 https://doi.org/10.1002/mbo3.722

Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater Ayodeji O. Falade Leonard V. Mabinya Anthony I. Okoh Uchechukwu U. Nwodo First published: 17 October 2018 https://doi.org/10.1002/mbo3.722

Questions ?

