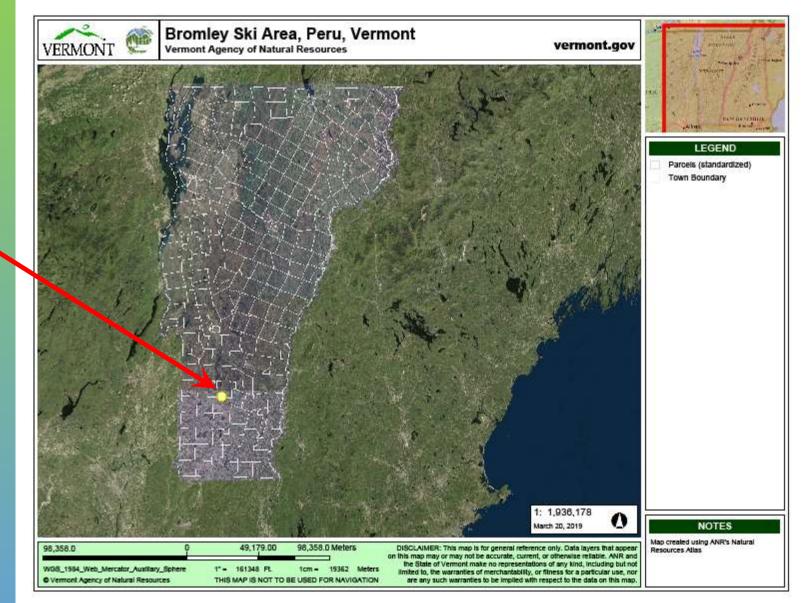
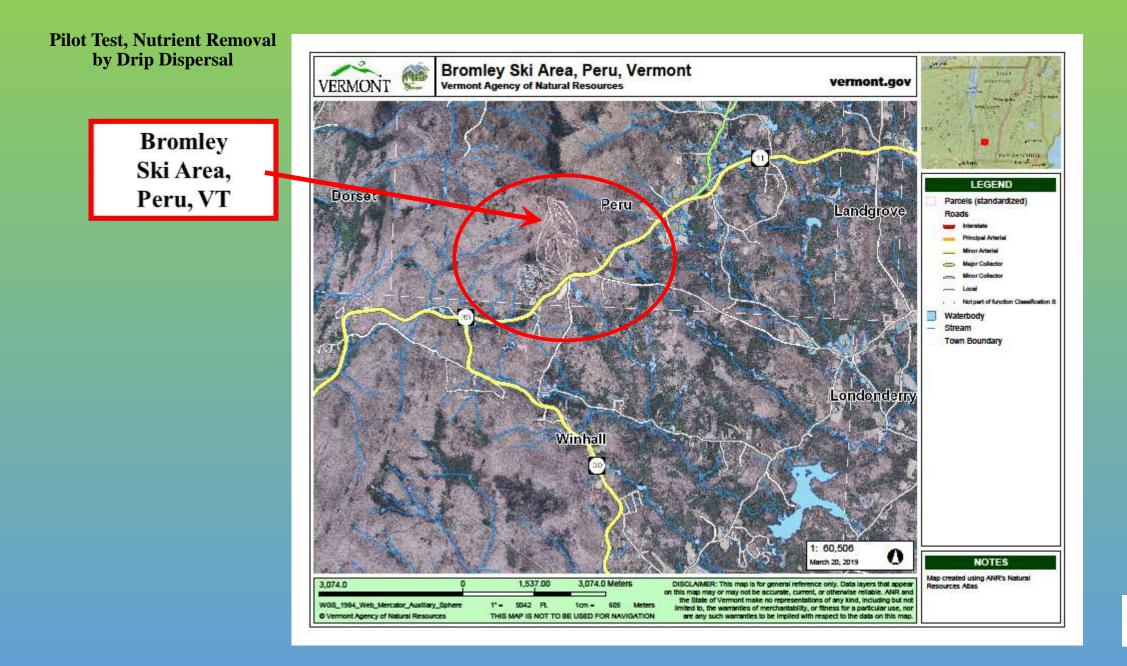

Pilot Test of Nutrient Removal by Large-Scale Drip Dispersal of Tertiary-Treated Effluent, Southern Vermont

Craig Heindel, C.P.G. Senior Hydrogeologist, Waite-Heindel Envir. Mgmt. Burlington, VT

> 2019 NEIWPCC Onsite Short Course



GUNTLOW & ASSOCIATES, INC.


- Proposed Development at Bromley Ski Area, Peru, VT;
 - Soil-based Wastewater Disposal;
 - In-stream Nutrient Limits are set by VT regulations;
 - Pilot Drip-Dispersal Test was conducted to evaluate nutrient removal prior to indirect discharge into stream.

> Bromley Ski Area, Peru, VT



Wastewater Disposal Needs: about 80,000 gpd

OPTIONS CONSIDERED:

1. Existing WW Treatment Plant [secondary], then disposal via spray irrigation at existing spray fields

NO: not enough capacity to treat or dispose of additional 80,000 gpd

Wastewater Disposal Needs: about 80,000 gpd

OTHER OPTIONS CONSIDERED:

2. Existing WW Treatment Plant [secondary], then disposal at new disposal area

NO: Indirect Discharge regulations require high degree of nutrient removal, so need tertiary treatment

Wastewater Disposal Needs: about 80,000 gpd

OPTION SELECTED:

3. Project-specific WW Treatment [tertiary], then soil-based disposal at new disposal area

YES – BUT . . . Vermont's Indirect Discharge regs require field verification of predicted nutrient removal by soils at disposal area.

VT's INDIRECT DISCHARGE REGULATIONS:

> Three independent capacities must be evaluated:

1. Sufficient application area [horizontal];

VT's INDIRECT DISCHARGE REGULATIONS:

Three independent capacities must be evaluated:

 Sufficient application area [horizontal];
 Sufficient vertical room for induced groundwater mound [maintain min. 3.0-ft. unsaturated zone below infiltrative surface];

VT's INDIRECT DISCHARGE REGULATIONS:

Three independent capacities must be evaluated:

 Sufficient application area [horizontal];
 Sufficient vertical room for induced groundwater mound [maintain min. 3.0-ft. unsaturated zone below infiltrative surface];

3. Compliance with "Aquatic Permitting Criteria" [provides presumption of compliance with Vermont Surface Water Quality Standards].

This presentation focuses on Capacity #3:

3. <u>Compliance with Aquatic Permitting Criteria:</u>

Two critical Nutrient parameters are addressed:

• <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;

This presentation focuses on Capacity #3:

3. Compliance with Aquatic Permitting Criteria:

Two critical Nutrient parameters are addressed:

- <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;
 - <u>Nitrate</u>: not exceed 2.0 mg/L.

This presentation focuses on Capacity #3:

3. <u>Compliance with Aquatic Permitting Criteria:</u>

Two critical Nutrient parameters are addressed:

- <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;
 - <u>Nitrate</u>: not exceed 2.0 mg/L.

<u>Question</u>: Where do these APCs apply? <u>Answer</u>: At the "Compliance Point"

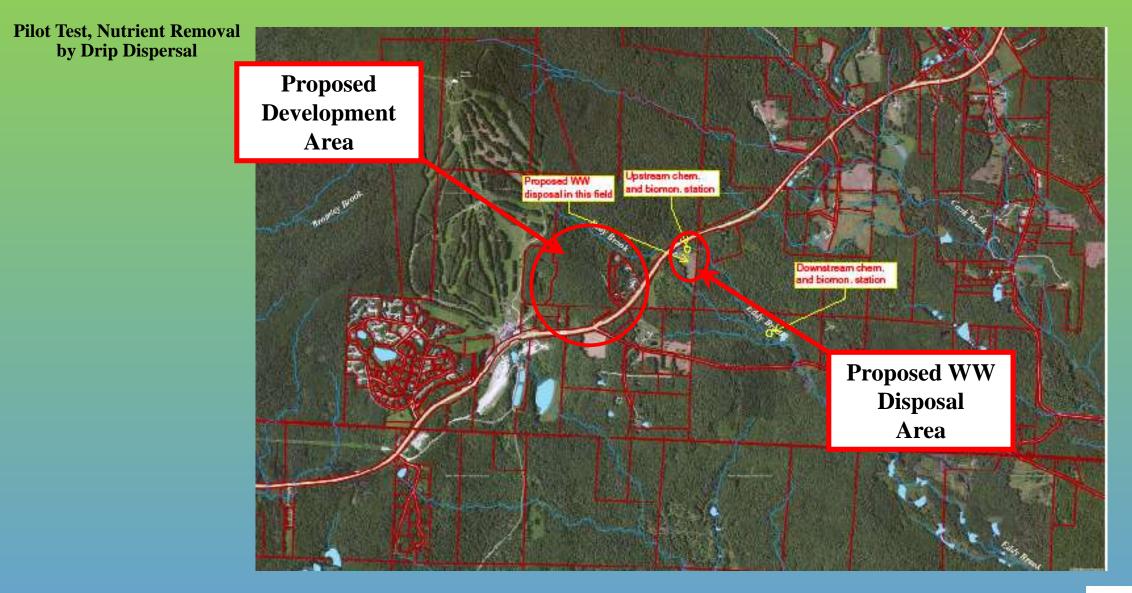
3. [Cont.] Compliance with Aq. Perm. Crit.:

Compliance Point:

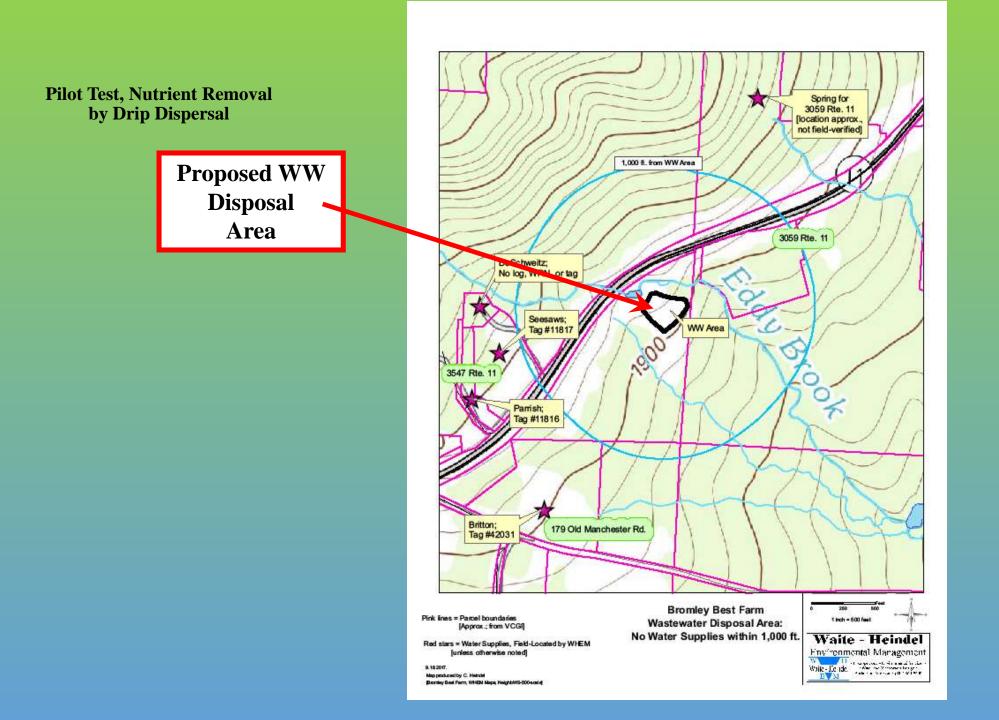
- In "receiving water", at lowest point of flowpath from disposal system;
 - Applies at "Low Median Monthly Flow".

3. [Cont.] Compliance with Aq. Perm. Crit.:

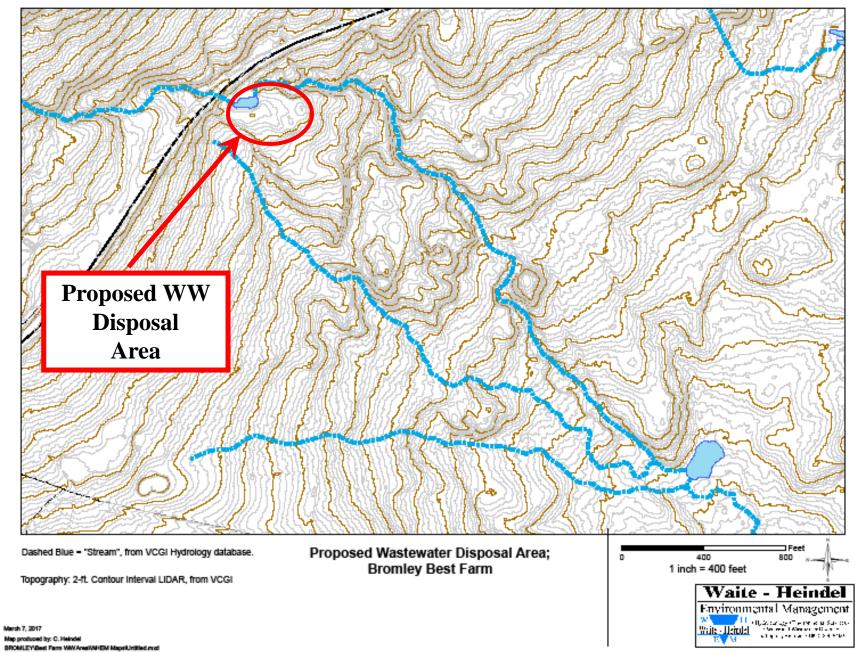
Compliance Point:

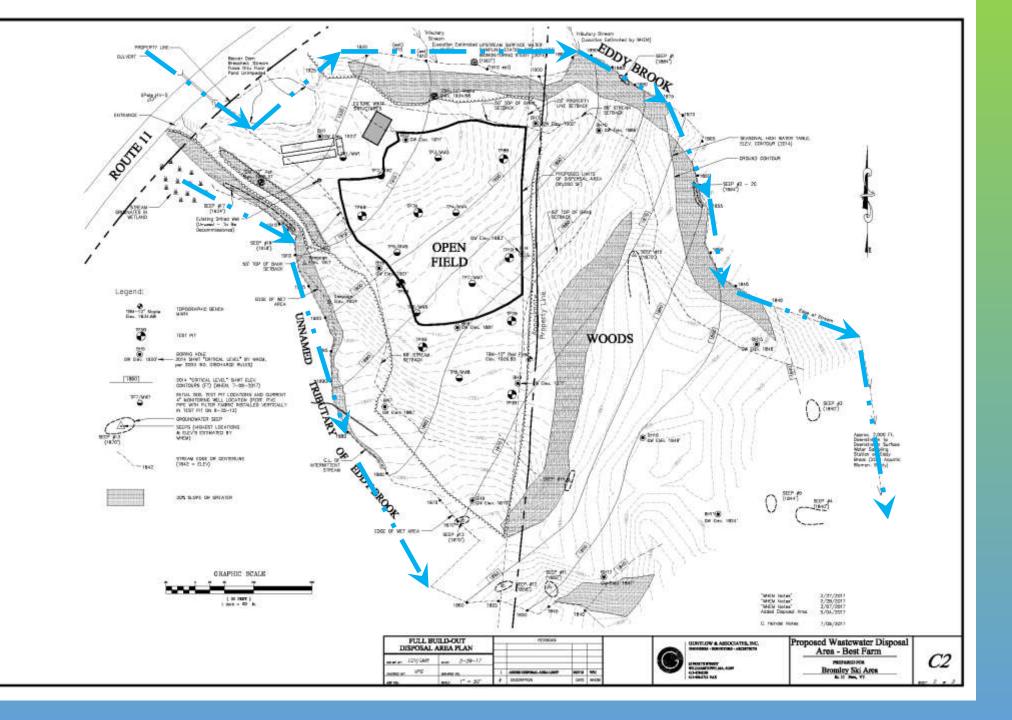

- In "receiving water", at lowest point of flowpath from disposal system;
 - Applies at "Low Median Monthly Flow".

LEADS TO:


• Choosing disposal site whose receiving water is a large stream or river [to maximize dilution]; OR

• Choosing treatment and disposal methods that will remove most of the nutrients [esp. TDP]. [OR BOTH]



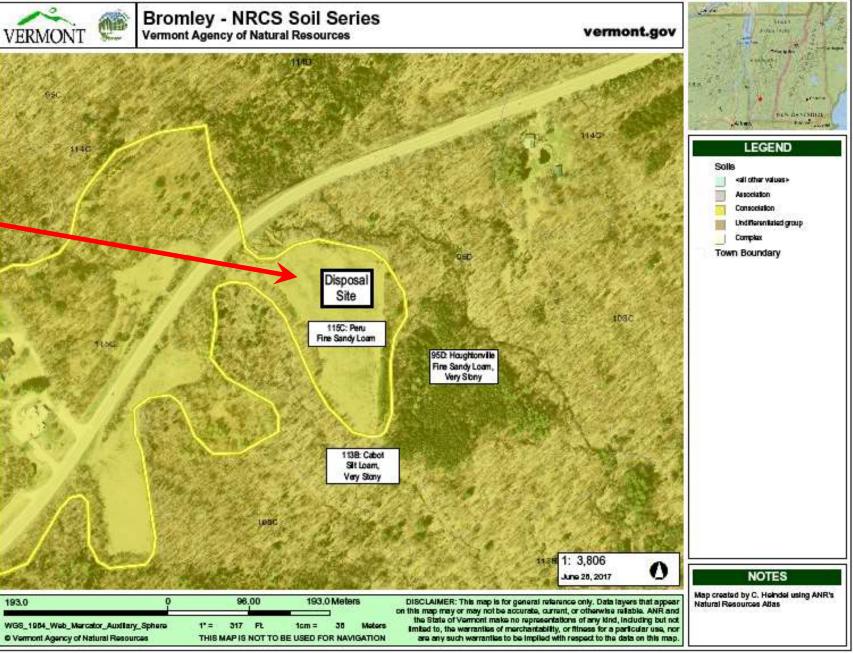


Map produced by: C. Heindel

Typical Test Pit Logs

Depth from Surface (Inches)	Soil Horizon	Soil Texture (USDA)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-17'	A	SL.	5YR2.5/1	•	Massive, Friable, Some "E" pockets
17-27"	Bw	LS	5YR4/6	*	Gravelly 15%
27-57"	C1	LS	2.5¥6/6		Gravelly 35% +/-
57-66"	C2	LS	2.5¥6/6		Medium Sand
roundwater: ottling:	none		999 () - 200 () ()	Parent Material: Estimated Season	Outwash, alluvial deposits al High Water Table: none
edge:	>66			Perc Rate Depth of Perc	27.48 Min/ Inch 36"

Depth from Surface (Inches)	Soil Horizon	Soil Texture (USDA)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-9"	A C1	SL	7.5YR3/2	÷	Massive, Friable, Some "E" pockets
9-33"	C1	LS	10YR4/6		Fine to Medium Sand
33-42"	C2	LS	2.5Y5/4		Gravelly 25%
42-78"	C3	LS	2.5¥6/6	-	Fine to Medium
roundwater:	none		L anananan manananan 1	Parent Material:	Outwash, alluvial deposits
lottling: edge:	none >78)	Estimated Seaso	nal High Water Table: none



> **NRCS Soil Series:** Peru **Fine Sandy Loam**

[parent material = loamy lodgement till]

Favorable Area for Drip Dispersal: -50,000 to 60,000 sq.ft.

• <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;

- <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;
- <u>Nitrate</u>: not exceed 2.0 mg/L;

- <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;
- <u>Nitrate</u>: not exceed 2.0 mg/L;
- Compliance is calculated at "Low Median Monthly" Stream Flow [LMMF].

- <u>Total Dissolved Phosphorus</u>: increase of no more than 0.001 mg/L above upstream location;
- <u>Nitrate</u>: not exceed 2.0 mg/L;
- Compliance is calculated at "Low Median Monthly" Stream Flow [LMMF].

The Challenge at this site: Will there be enough dilution in Eddy Brook?

<u>Compliance with Aquatic Permitting Criteria:</u>

Total Dissolved Total Phosphorus Nitrate Nitrogen Mg/L Mg/L Mg/L in-stream **TARGET:** in-stream increase of no ["Aquatic Permitting Criteria", not to exceed [no APC] more than per VT Indirect Discharge Regs] 2.0 0.001

Compliance with Aquatic Permitting Criteria:

	Total Dissolved Phosphorus Mg/L	Nitrate Mg/L	Total Nitrogen Mg/L
TARGET: [''Aquatic Permitting Criteria'', per VT Indirect Discharge Regs]	in-stream increase of no more than 0.001	in-stream not to exceed 2.0	[no APC]
INPUT: Wastewater Type			
Sewage [typical domestic]	5 to 15		40 to 100

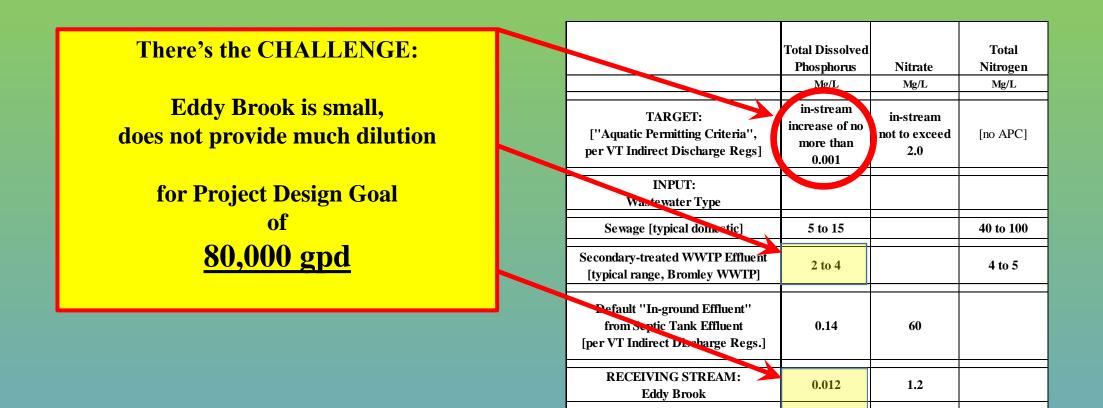
Compliance with Aquatic Permitting Criteria:

	Total Dissolved Phosphorus	Nitrate	Total Nitrogen
	Mg/L	Mg/L	Mg/L
TARGET: [''Aquatic Permitting Criteria'', per VT Indirect Discharge Regs]	in-stream increase of no more than 0.001	in-stream not to exceed 2.0	[no APC]
INPUT: Wastewater Type			
Sewage [typical domestic]	5 to 15		40 to 100
Secondary-treated WWTP Effluent [typical range, Bromley WWTP]	2 to 4		4 to 5

<u>Compliance with Aquatic Permitting Criteria:</u>

	Total Dissolved Phosphorus Mg/L	Nitrate Mg/L	Total Nitrogen Mg/L
TARGET: [''Aquatic Permitting Criteria'', per VT Indirect Discharge Regs]	in-stream increase of no more than 0.001	in-stream not to exceed 2.0	[no APC]
INPUT: Wastewater Type			
Sewage [typical domestic]	5 to 15		40 to 100
Secondary-treated WWTP Effluent [typical range, Bromley WWTP]	2 to 4		4 to 5
Default ''In-ground Effluent'' from Septic Tank Effluent [per VT Indirect Discharge Regs.]	0.14	60	

3.


Compliance with Aquatic Permitting Criteria:

	Total Dissolved Phosphorus Mg/L	Nitrate Mg/L	Total Nitrogen Mg/L
TARGET: [''Aquatic Permitting Criteria'', per VT Indirect Discharge Regs]	in-stream increase of no more than 0.001	in-stream not to exceed 2.0	[no APC]
INPUT: Wastewater Type			
Sewage [typical domestic]	5 to 15		40 to 100
Secondary-treated WWTP Effluent [typical range, Bromley WWTP]	2 to 4		4 to 5
Default ''In-ground Effluent'' from Septic Tank Effluent [per VT Indirect Discharge Regs.]	0.14	60	
RECEIVING STREAM: Eddy Brook	0.012	1.2	

3.

<u>Compliance with Aquatic Permitting Criteria:</u>

3. <u>Compliance with Aquatic Permitting</u> <u>Criteria:</u>

<u>Calculation Method</u>: Mass-balance, at Compliance Point in Eddy Brook</u>

[per Vermont Indirect Discharge Rule, 2003]

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

 $\frac{[(E_c) \times (E_q) + (D_c) \times (D_q)]}{(E_c + D_c)} = \text{Resulting in-stream concentration}$

 $(E_q + D_q)$

- Where: E_c = Existing in-stream receiving water concentration
 - $\mathbf{E}_{\mathbf{q}} = \mathbf{Appropriate}$ stream flow at point of compliance and
 - for annual or seasonal release rate.
 - D_c = In-ground effluent concentration (5% exc), based on site specific testing.
 - D_q = Proposed discharge flow (i.e. maximum design capacity) .

Low Median Monthly Flow at Compliance Point in Eddy Brook:

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

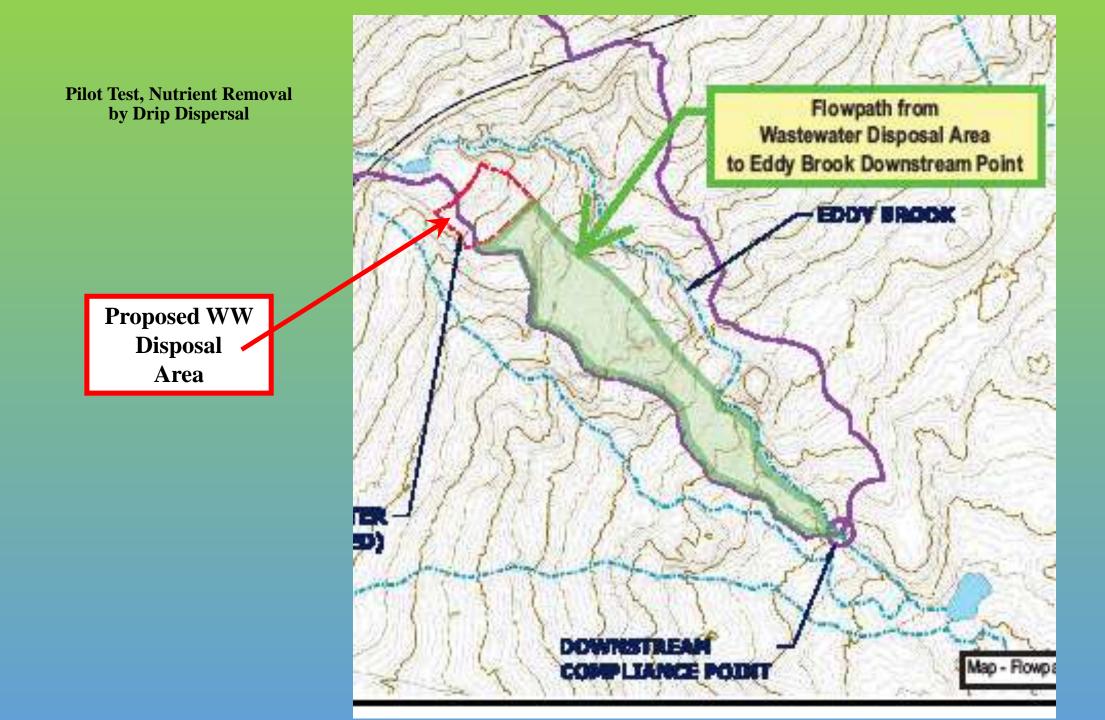
$$\frac{[(E_c) \times (E_q) + (D_c) \times (D_q)]}{(E_q + D_q)} = \text{Resulting in-stream concentration}$$

Low Median Monthly Stream flow [LMMF]:

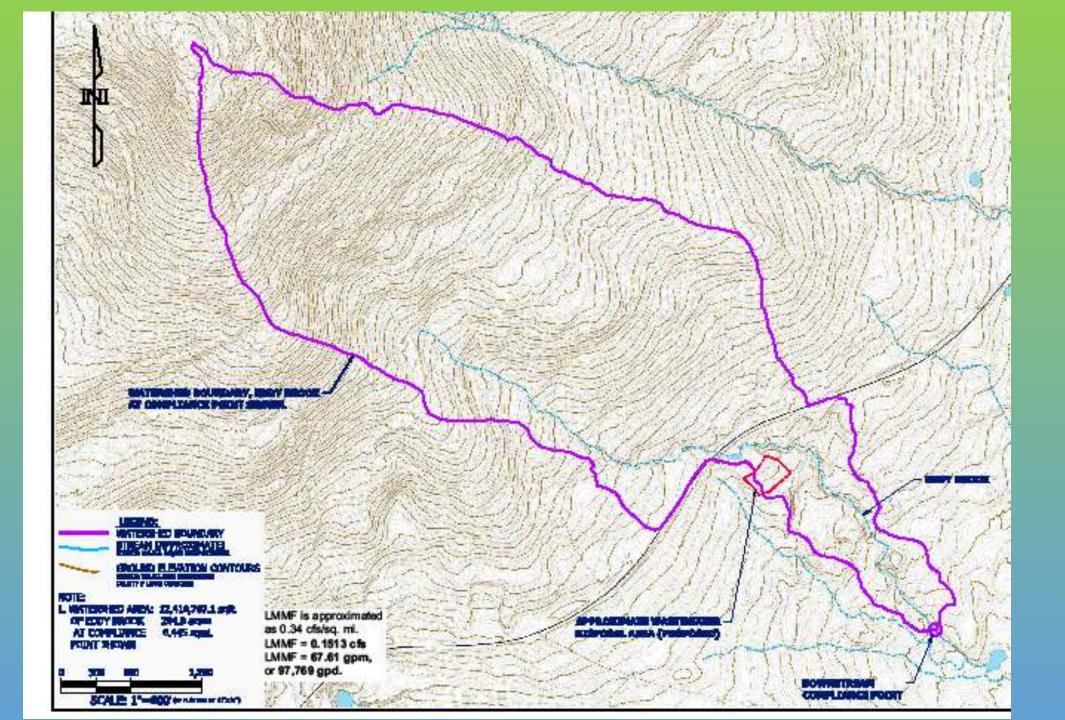
- Receiving water = Eddy Brook;
 - No stream gage;
- SO: use Vermont default LMMF value of 0.34 csm, at Point of Compliance

LMMF [cfs] = drainage area [sq.mi.] x 0.34 csm

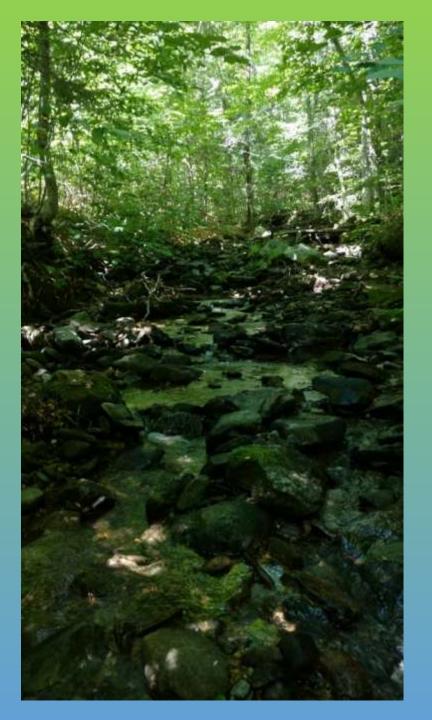
where: LMMF = Low Median Monthly Flow; cfs = cubic ft. per second; csm = cfs per sq.mi.


Location of Compliance Point in Eddy Brook:

Compliance Point = Downstream point in Eddy Brook where effluent flowpath from wastewater disposal field intersects the brook.


[= downstream-most point of the "Indirect Discharge"]

[per VT Indirect Discharge Regs]

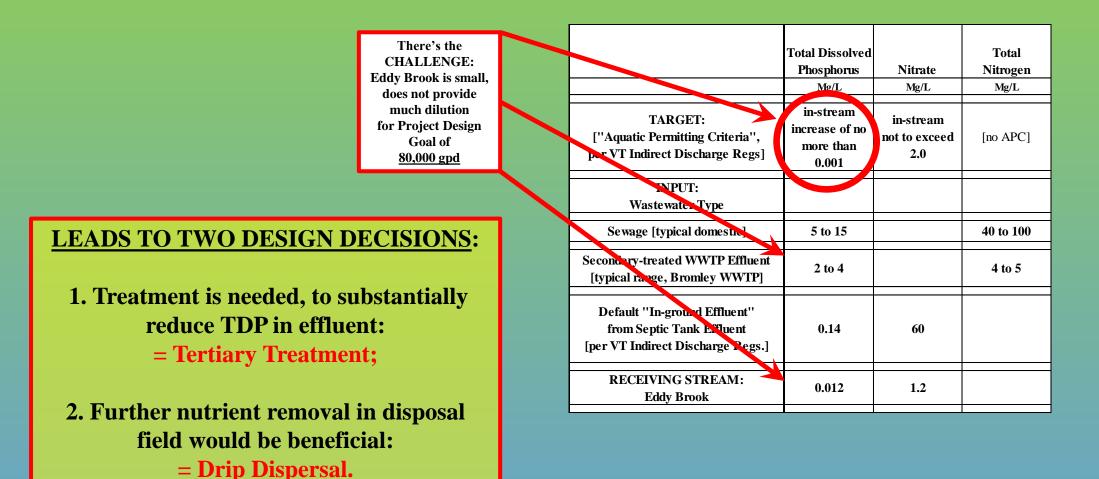


Compliance Point, Eddy Brook – August 2016

Upstream of Compliance Point, Eddy Brook – August 2016

Watershed Area at Compliance Point	0.445	sq.mi.
LMMF [default]	0.34	csm [cubic feet per second per sq.mi.]
LMMF, at Compliance Point	0.1513	cfs
	97,781	gpd [conversion]

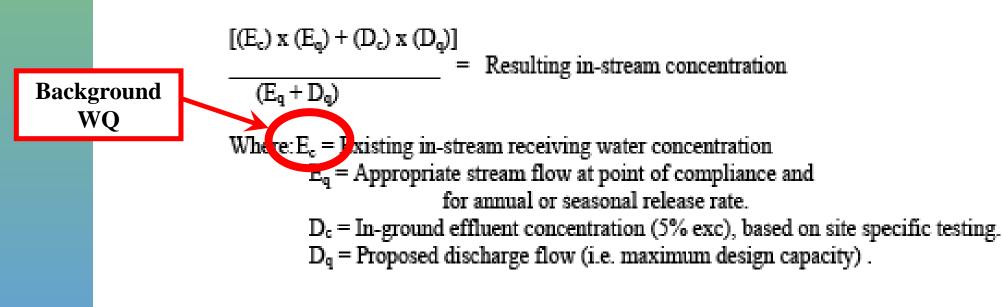
3. <u>Compliance with Surface Water Quality</u> <u>Standards:</u>



BUT...Remember the challenge of meeting Aquatic Permitting Criteria?

3.

<u>Compliance with Aquatic Permitting Criteria:</u>


NEXT: Need background concentrations at Compliance Point in Eddy Brook, for:

- Total Dissolved Phosphorus;
 - <u>Nitrate</u>.

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

 ✓ Background WQ in Eddy Brook Bromley Mountain, Best Farm WW Area

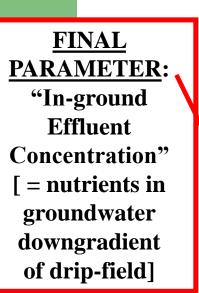
Upgradient Surface Water, Aquatic Permitting Criteria;

Eddy Brook, 2014

Date	Mon. Station	Total Dissolved Phos. (mg/l)	Nitrate Nitrogen (mg/l)	рН (s.u.)	
6/19/2014		0.008	0.2	6.47	
6/24/2014		0.007	0.3	6.63	
7/2/2014		< 0.005	0.3	6.59	
7/17/2014		0.009	0.2	7.07	
8/6/2014		0.017	0.2	7.12	
8/12/2014	Upstream	0.019	0.2	7.13	
9/11/2014		0.026	0.2	7.23	
9/17/2014		0.03	0.2	7.21	
10/1/2014		0.024	0.2	7.07	
10/9/2014		0.011	< 0.1	6.88	
STATISTICS:	STATISTICS:				
Minimum			0.10	6.47	
Maximum	Maximum			7.23	
Normal Distribution	on?	yes	yes	NA	
	Transformation Closest to Normal		NA	NA	
Does Transformation Produce Normality?		NA	NA	NA	
Mean of Untransform	Mean of Untransformed Data			6.85	
Mean of Transforme	NA	NA	NA		
Std. Dev. of Untransfor	0.00887	0.0568	NA		
Std. Dev. of Transform	NA	NA	NA		
n		10 10		10	
Student's t-value (one	1.833	1.833	NA		
Upper 95% C.I.		0.0207	0.2429	NA	

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:


$[(E_c) \ge (E_q) + (D_c) \ge (D_q)]$	
=	Resulting in-stream concentration
$(E_q + D_q)$	

 ✓ Proposed Indirect
 Discharge:
 80,000 gpd

- Where: E_c = Existing in-stream receiving water concentration E_q = Appropriate stream flow at point of compliance and for annual or seasonal release rate. D_c = In-ground effluent concentration (5% exc), based on site specific testing.
 - D_q = roposed discharge flow (i.e. maximum design capacity).

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

 $\frac{[(E_c) \times (E_q) + (D_c) \times (D_q)]}{[(E_q + D_q)]} = \text{Resulting in-stream concentration}$

Where: E_c = Existing in-stream receiving water concentration
E_q = Appropriate stream flow at point of compliance and for annual or seasonal release rate.
D_c = n-ground effluent concentration (5% exc), based on site specific testing.
E_q = Proposed discharge flow (i.e. maximum design capacity).

§14-912 Determining Compliance With Aquatic Permitting Criteria

FINAL PARAMETER: "In-ground Effluent Concentration" [= nutrients in groundwater downgradient of drip-field]

LEADS TO PILOT TEST

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

 $\frac{[(E_c) \times (E_q) + (D_c) \times (D_q)]}{[(E_q + D_q)]} = \text{Resulting in-stream concentration}$

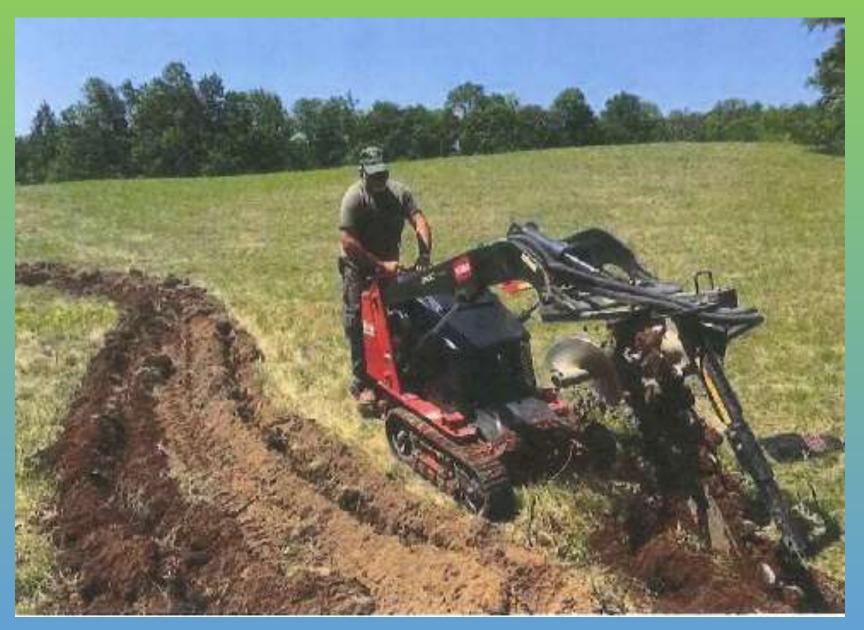
Where: E_c = Existing in-stream receiving water concentration
E_q = Appropriate stream flow at point of compliance and for annual or seasonal release rate.
D_c = n-ground effluent concentration (5% exc), based on site specific testing.
E_q = Proposed discharge flow (i.e. maximum design capacity).

PILOT TEST DETAILS:

- <u>Drip dispersal field</u>: 235 ft. x 11 ft., 4 dispersal pipes; application area: 2,515 sq.ft.
- <u>Test Effluent</u>: Wastewater effluent from Bromley WWTP (secondary treatment), diluted with well water by approximately 1:4, spiked with Bromide as tracer.
- <u>Application Rate of Test Effluent</u>: 2.0 gpd/sq.ft.; 5,020 gpd for 119 days.
- <u>Down-gradient groundwater quality, depth</u>: sampled from MW-BH-3, located 35 ft. downgradient.
- <u>Up-gradient groundwater [for comparison]</u>: MW-BH-2, located 180 ft. upgradient.

PILOT TEST DETAILS:

Drip dispersal field: 235 ft. x 11 ft., 4 dispersal pipes; application area: 2,515 sq.ft.



Perc-Rite® Drip Dispersal System, distributed by Oakson,

from American Manufacturing:

- 0.5-in. diameter
- Emitters located every 2 ft.
- Emitter discharge rate: 0.61 gal/hour, over wide pressure range.

PILOT TEST: EFFLUENT LAGOON

PILOT TEST; EFFLUENT LAGOON & PUMP

PILOT TEST; EFFLUENT LAGOON & PUMP

PILOT TEST; EFFLUENT LAGOON & PUMP

PILOT TEST; LINE TO DRIP DISPERSAL AREA

PILOT TEST: TANK OF EFFLUENT BEING UNLOADED

PILOT TEST: EFFLUENT CHEMISTRY

[Before spiking with Bromide as tracer]

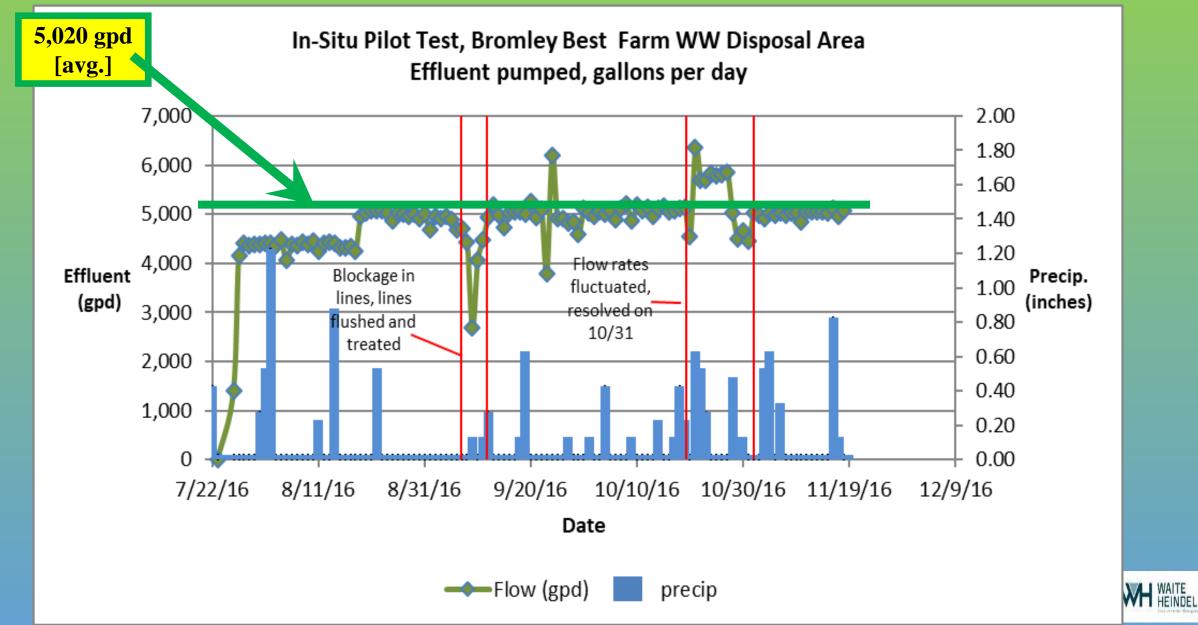
Sample Date	BOD (5-Day)	Bromide	Chloride	Nitrate as N	Nitrite as N	NH3 as N	TKN	Total N	TDP	TSS	Total Sodium	Cond.	рН	Temp.
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mS/cm)	(s.u.)	(°C)
7/20/2016	5	< 1.0	72	1.7	< 0.2	2.2	3.5	5.4	2.7	10	39	503	7.37	19.5
7/21/2016	5	< 1.0	71	0.52	< 0.2	1.4	3.2	3.92	2.5	8	37	484	7.34	19.0
11/10/2016	< 1.0	< 0.10	64	0.55	< 0.2	2.8	4.9	5.65	2.4	18	37	477	6.31	7.3
11/15/2016	2.9	< 0.10	59	0.53	< 0.2	2.8	5.9	6.63	2.7	24	35	493	7.55	6.2
11/18/2016	< 1.1	0.11	60	0.51	< 0.2	3.4	6.2	6.91	2.7	23	34	487	7.62	8.2

PILOT TEST: EFFLUENT SPIKING

Effluent is spiked with
 Pool-grade Sodium Bromide
 as tracer
 [2 oz. per 1,000 gallons of effluent]

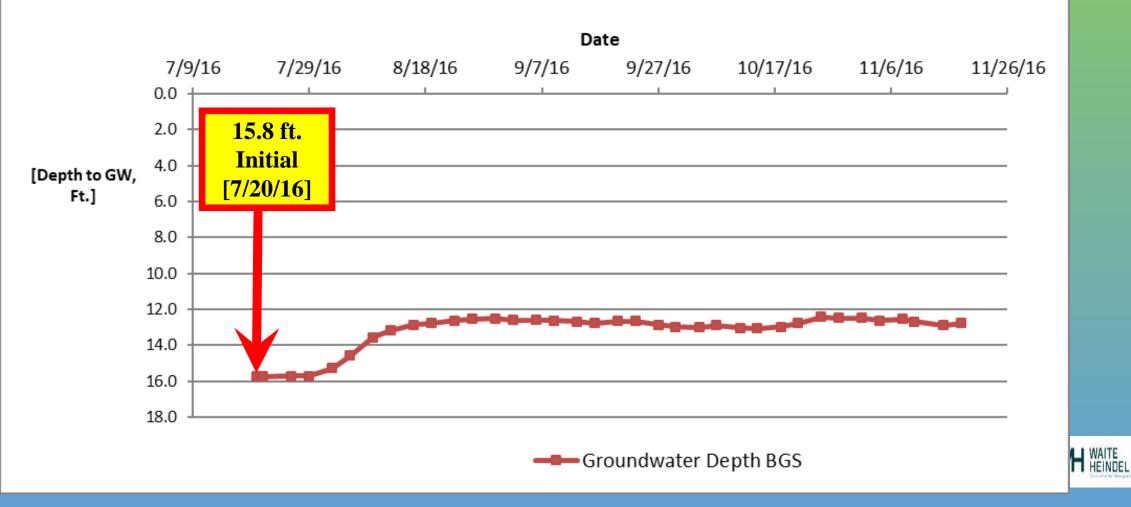
[requested by personnel in VTDEC Indirect Discharge Program].

PILOT TEST: SPIKED EFFLUENT CHEMISTRY


		-														
		BOD (5-Day)	Bromide	Chloride	Nitrate as N	Nitrite as N	NH3 as N	TKN	Total N	TDP	TSS	Total Sodium	Conductivity	pH	Temp.	
Raw Effluent	Sample Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mS/cm)	(s.u.)	(°C)	
	7/20/2016	5	< 1.0	72	1.7	< 0.2	2.2	3.5	5.4	2.7	10	39	503	7.37	19.5	
	7/21/2016	5	< 1.0	71	0.52	< 0.2	1.4	3.2	3.92	2.5	8	37	484	7.34	19.0	
	11/10/2016	< 1.0	< 0.10	64	0.55	< 0.2	2.8	4.9	5.65	2.4	18	37	477	6.31	7.3	
	11/15/2016	2.9	< 0.10	59	0.53	< 0.2	2.8	5.9	6.63	2.7	24	35	493	7.55	6.2	
	11/18/2016	< 1.1	0.11	60	0.51	< 0.2	3.4	6.2	6.91	2.7	23	34	487	7.62	8.2	
								1	1				ł			
		BOD (5-Day)	Bromide	Chloride	Nitrate as N	Nitrite as N	NH3 as N	TKN	Total N	TDP	TSS	Total Sodium	Conductivity	pH	Temp.	1
Diluted & Spiked Eff.	Sample Date	202 (2 2 4 5 7											(mS/cm)			
Diuteu & Spikeu En.		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	()	(s.u.)	(°C)	
	7/20/2016	5	9.1	74	1.5	< 0.020	1.5	2.5	4.02	2.1	10	38	512	7.19	18.6	
	7/21/2016	5	9.3	75	1.1	< 0.020	1.4	2.8	3.92	1.9	7	39	514	7.49	19.7	
	7/26/2016		11	73				1	1				508	7.36	23.1	
	7/29/2016		12	72									526	7.63	25.2	
	8/2/2016		11	76									535	7.52	19.8	
	8/5/2016	1	13	80									545	7.53	25.9	
	8/9/2016	1	12	74									522	7.64	25.3	
	8/12/2016	+	12	74				1 1	1	1			534	7.23	26.0	
					W	ice-a	-Wee	K S	n ar	NAIV	SPS					
	8/16/2016		12	75				AN 10	in al	I CLIY	JUB		549	7.22	20.6	
	8/19/2016		13	75						Ť			565	7.34	23.2	
	8/23/2016		13	76				Dwor	mida				568	7.36	23.0	
	8/26/2016		11	72				DIU	mide				525	7.35	24.1	
	8/30/2016		11	74									539	7.12	23.1	
	9/2/2016		12	76					oride				549	6.94	21.6	
							•	<u>h</u>	ride					_		
	9/6/2016	+	13	77						-9			539	6.82	21.5	
	9/9/2016		13	78									531	7.24	25.0	
	9/13/2016		12	85				Cod	ium	•			563	7.04	21.6	
	9/16/2016		12	78				JUU	IUII				535	7.03	19.6	
	9/20/2016		11	77									526	6.82	22.8	
	9/23/2016	1	11	78					1				527	6.88	19.7	
	9/27/2016		12	77				an					515	6.89	17.8	
								all								
	9/30/2016		12	79									530	6.64	14.5	
	10/4/2016		12	78		Field		001-	10.100	onta	f		525	6.22	14.8	
	10/7/2016		11	77		г е (asu	rem	EIILS	UI		527	6.30	16.7	
	10/11/2016		11	77							-		527	6.78	13.4	
	10/14/2016		12	74		C	-	.					529	6.13	11.8	
	10/18/2016	1	10	69		Sn		inn	lucta	ance			515	6.82	13.9	
	10/21/2016	1	10	71					ucu		 • 		527	6.59	12.4	
						-										
	10/25/2016		11	70									498	6.41	9.3	
	10/28/2016		11	66									482	6.54	6.6	
	11/1/2016		10	62									265	5.96	9.8	
	11/4/2016		10	65									341	6.81	9.9	
	11/8/2016		11	67								34	489	5.81	10.7	
	11/10/2016	1.7	12	67	0.64	< 0.20	1.7	5.2	6.04	1.7	17	34	486	6.60	7.1	
	11/15/2016	4.3	12	66	0.52	< 0.20	2.1	4.2	4.92	1.9	17	34	516	6.29	5.3	
											-			_		
	11/18/2016	3.2	12	66	0.55	< 0.20	2.4	4.6	5.35	2	20	35	522	6.64	4.4	
	Mean	3.8	12	74	0.86	< 0.13	1.8	3.86	4.85	1.9	14	38	514	6.89	17.4	WH H
	Max	5	13	85	1.5	< 0.20	2.4	5.2	6.04	2.1	20	44	568	7.64	26.0	VVI I HE
	Min	1.7	9.1	62	0.52	< 0.02	1.4	2.5	3.92	1.7	7	33	265	5.81	4.4	astronomic day high
	I			-		1	1		1	1	1				- ···	

PILOT TEST: SPIKED EFFLUENT CHEMISTRY

Derr	Sample Date	BOD (5-Day)	Bromide	Chloride	Nitrate as N	Nitrite as N	NH3 as N	TKN	Total N	TDP	TSS	Sodium	Cond.	рН
Raw Effluent	Sample Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mS/cm)	(s.u.)
Linuent	7/20/2016	5	< 1.0	72	1.7	< 0.2	2.2	3.5	5.4	2.7	10	39	503	7.37
	7/21/2016	5	< 1.0	71	0.52	< 0.2	1.4	3.2	3.92	2.5	8	37	484	7.34
	11/10/2016	< 1.0	< 0.10	64	0.55	< 0.2	2.8	4.9	5.65	2.4	18	37	477	6.31
	11/15/2016	2.9	< 0.10	59	0.53	< 0.2	2.8	5.9	6.63	2.7	24	35	493	7.55
	11/18/2016	< 1.1	0.11	60	0.51	< 0.2	3.4	6.2	6.91	2.7	23	34	487	7.62
						-					1			
Diluted &	Sample Date	BOD (5-Day)	Bromide	Chloride	Nitrate as N	Nitrite as N	NH3 as N	TKN	Total N	TDP	TSS	Sodium	Cond.	рН
Spiked Effluent	Sample Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mS/cm)	(s.u.)
	Mean	3.8	12	74	0.86	< 0.13	1.8	3.86	4.85	1.9	14	38	514	6.89
	Max	5	13	85	1.5	< 0.20	2.4	5.2	6.04	2.1	20	44	568	7.64
	Min	1.7	9.1	62	0.52	< 0.02	1.4	2.5	3.92	1.7	7	33	265	5.81


PILOT TEST: PUMPING RATE OVERVIEW

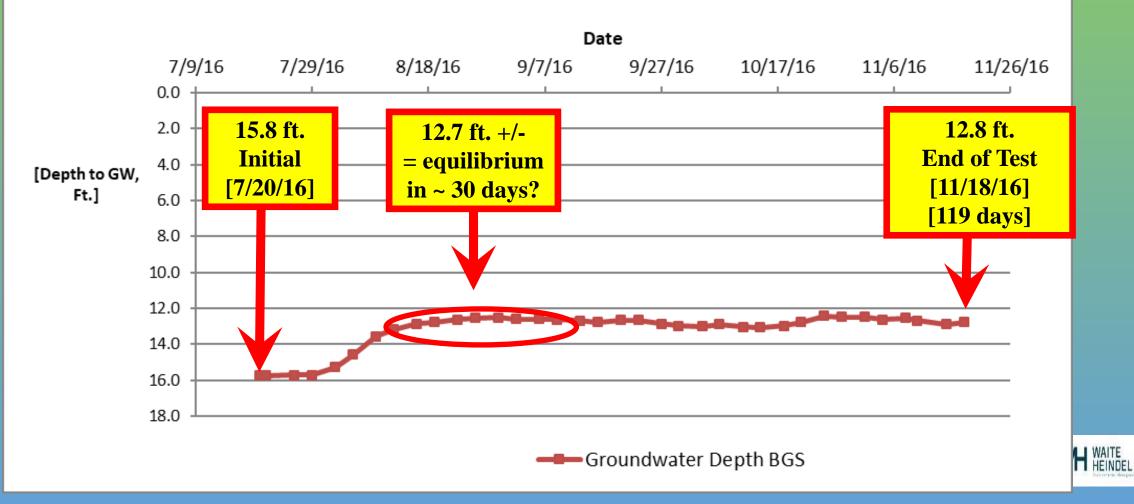
PILOT TEST: GROUNDWATER DEPTHS,

DOWN-GRADIENT

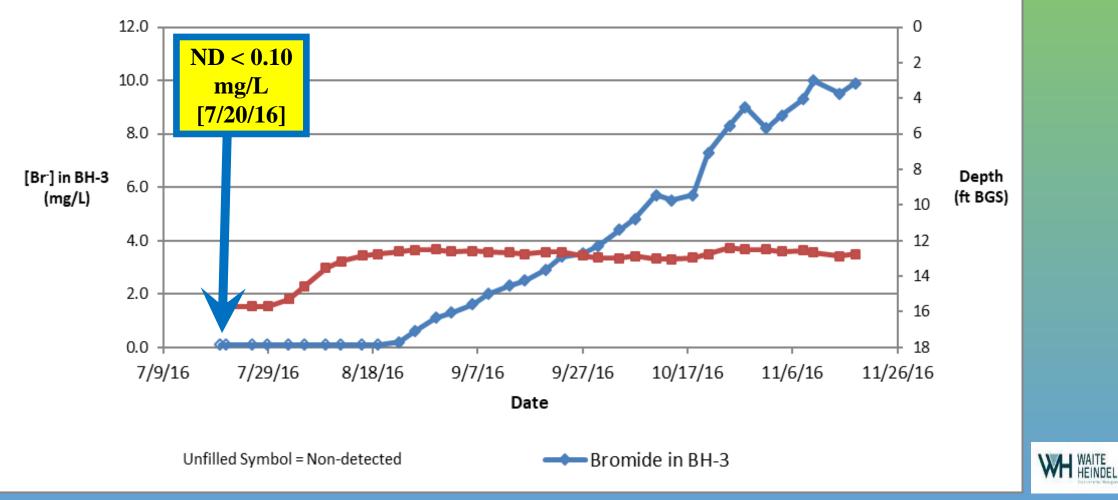
In-Situ Pilot Test, Bromley Best Farm WW Disposal Area Groundwater Depth in BH-3 (Downgradient)

PILOT TEST: GROUNDWATER DEPTHS,

DOWN-GRADIENT


In-Situ Pilot Test, Bromley Best Farm WW Disposal Area Groundwater Depth in BH-3 (Downgradient)

PILOT TEST: GROUNDWATER DEPTHS,


DOWN-GRADIENT

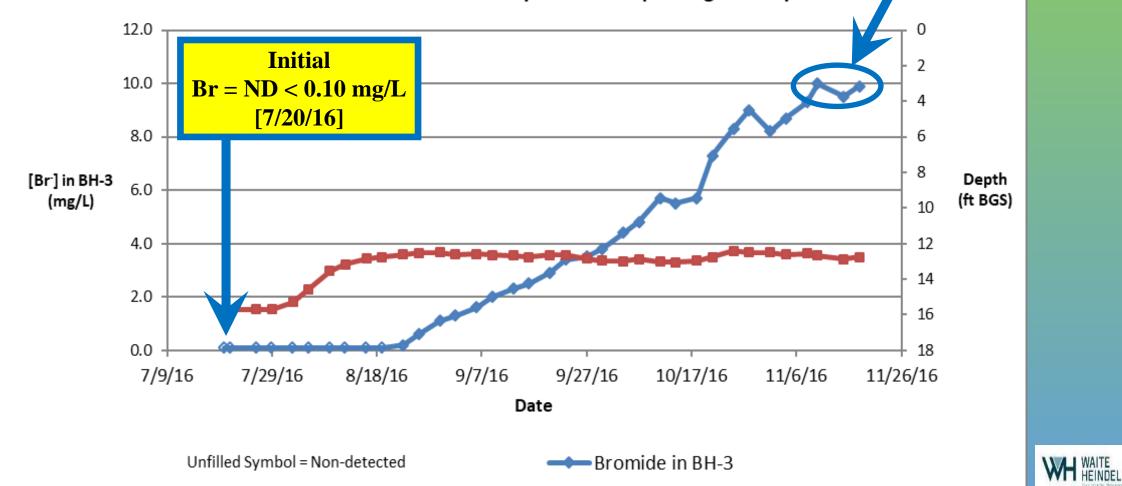
In-Situ Pilot Test, Bromley Best Farm WW Disposal Area Groundwater Depth in BH-3 (Downgradient)

PILOT TEST: BROMIDE IN DOWN-GRADIENT GROUNDWATER

In-Situ Pilot Test, Bromley Best Farm WW Disposal Area Bromide and Groundwater Depth in BH-3 (Downgradient)

PILOT TEST: BROMIDE IN

DOWN-GRADIENT GROUNDWATER


Equilibrium

Br = 9.8 mg/L

[Nov. 10- 18, 2016]

[111 – 119 days]

In-Situ Pilot Test, Bromley Best Farm WW Disposal Area Bromide and Groundwater Depth in BH-3 (Downgradient)

PILOT TEST: NUTRIENTS IN

DOWN-GRADIENT GROUNDWATER

WH WAITE HEINDEL

	Sampla Data	Bromide	Nitrate as N	TDP	Depth to Water
	Sample Date	(mg/L)	(mg/L)	(mg/L)	(ft BGS)
Initial	7/20/2016	< 0.10	0.23	0.018	15.75
	7/21/2016	< 0.10	0.25	0.015	15.73
	7/26/2016	< 0.10			15.72
	11/8/2016	9.3			12.55
	11/10/2016	10.0	1.2	< 0.005	12.69
	11/15/2016	9.5	1.2	< 0.005	12.89
	11/18/2016	9.9	1.0	0.012	12.76
	Mean	3.7	0.8	0.011	13.22
	Max	10.0	1.2	0.018	15.75
	Min	0.1	0.2	0.005	12.43

<u>PILOT TEST: NUTRIENTS IN</u> DOWN-GRADIENT GROUNDWATER

Sampla Data	Bromide	Nitrate as N	TDP	Depth to Water
Sample Date	(mg/L)	(mg/L)	(mg/L)	(ft BGS)
7/20/2016	< 0.10	0.23	0.018	15.75
7/21/2016	< 0.10	0.25	0.015	15.73
7/26/2016	< 0.10	Time Gap of 110 da	ays	15.72
11/8/2016	9.3	Waiting for Br equilib	orium	12.55
11/10/2016	10.0	1.2	< 0.005	12.69
11/15/2016	9.5	1.2	< 0.005	12.89
11/18/2016	9.9	1.0	0.012	12.76
Mean	3.7	0.8	0.011	13.22
Max	10.0	1.2	0.018	15.75
Min	0.1	0.2	0.005	12.43

PILOT TEST: NUTRIENTS IN

DOWN-GRADIENT GROUNDWATER

	Sampla Data	Bromide	Nitrate as N	TDP	Depth to Water
	Sample Date	(mg/L)	(mg/L)	(mg/L)	(ft BGS)
	7/20/2016	< 0.10	0.23	0.018	15.75
	7/21/2016	< 0.10	0.25	0.015	15.73
	7/26/2016	< 0.10			15.72
	11/8/2016	9.3			12.55
۱Γ	11/10/2016	10.0	1.2	< 0.005	12.69
Н	11/15/2016	9.5	1.2	< 0.005	12.89
L	11/18/2016	9.9	1.0	0.012	12.76
	Mean	3.7	Final NO3: 1.2 mg/L;	Final TDP: 0.00 [avg.]	^{7 mg/L;} 13.22
	Max	10.0		decrease from initi	13.13
	Min	0.1	4-fold increase over initial		12.43

WH WAITE HEINDEL

Final:

8-day

equilibrium

Pilot Test, Nutrient Removal by Drip Dispersal

REMEMBER WHY WE DID THE PILOT STUDY?

In-ground "Effluent" Concentration:

= PILOT TEST, to provide Groundwater data downgradient of drip-field

<u>Calculation Method</u>: Mass-balance, at Compliance Point in Eddy Brook:

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

 $\frac{[(E_c) \times (E_q) + (D_c) \times (D_q)]}{(E_q + D_q)} = \text{Resulting in-stream concentration}$

Where: E_c = Existing in-stream receiving water concentration

- = Appropriate stream flow at point of compliance and
 - for annual or seasonal release rate.
- D_c = In-ground effluent concentration (5% exc), based on site specific testing.
- D_q = Proposed discharge flow (i.e. maximum design capacity).

Pilot Test, Nutrient Removal by Drip Dispersal

REMEMBER WHY WE DID THE PILOT STUDY?

In-ground "Effluent" Concentration:

= PILOT TEST, to provide Groundwater data downgradient of drip-field

<u>Calculation Method</u>: Mass-balance, at Compliance Point in Eddy Brook:

§14-912 Determining Compliance With Aquatic Permitting Criteria

(a) To determine compliance with the Aquatic Permitting Criteria, a mass balance equation shall be used. The resulting in-stream concentration calculated with the mass balance equation must be less than or equal to the Aquatic Permitting Criterion for each parameter to demonstrate compliance. The following mass balance equation shall be used for calculating the resulting in-stream concentration:

 $[(E_c) \ge (E_q) + (D_c) \ge (D_q)]$

= Resulting in-stream concentration

 $(E_q + D_q)$

Where: E_c = Existing in-stream receiving water concentration

- E_p = Appropriate stream flow at point of compliance and
 - for annual or seasonal release rate.
- $D_c = n$ -ground effluent concentration (5% exc), based on site specific testing.

WH WAITE HEINDEL

Proposed discharge flow (i.e. maximum design capacity).

Final "In-Ground Effluent" [Groundwater] Nutrient Concentrations: → NO3: 1.20 Mg/L; → TDP: 0.012 Mg/L.

<u>Calculation Method</u>: Mass-balance, at Compliance Point in Eddy Brook:

$$\frac{[(E_c) \times (E_q) + (D_c) \times (D_q)]}{(E_q + D_q)} = \text{Resulting in-stream concentration}$$

- Ec = Stream concentrations = 0.021 Mg/L TDP and 0.243 Mg/L NO3 [upper 95% Conf. Value];
 - Eq = Streamflow = 97,769 gpd [LMMF];
- Dc = "In-ground effluent" = 0.012 Mg/L TDP and 1.20 Mg/L NO3

[max. of final 3 values of pilot test];

• Dq = Discharge flow = 80,000 gpd.

Pilot Test, Nutrient Removal by Drip Dispersal

Mass-Balance Calculations & Results:

INPUT PAR	AMETERS:				Notes:
	Chemica	I Name:	TDP		Total Dissolved Phosphorus
				<u>units:</u>	
Downgra	Downgrad. GW Concentration:		0.012	mg/L	Maximum Value of 3 final Samples, Nov. 2016 in-situ pilot test
Upstrea	m SW Conce	entration:	0.021	mg/L	Upper 95% C.V., from 2014 Eddy Brook Stream Sampling data
		Standard:	increase of 0.00		per IDRs
	Type of Di	ischarge:	Annual		drip dispersal
	Stream	m Name:	Eddy Brook		
		LMMF:	97,769	gpd	0.445 mi ² drainage area * 0.34 csm, converted to gpd
	Dispos	sal Rate:	80,000	gpd	
Di	ilution Ratio a	at LMMF:	1.22	to 1	
RESULTS:					
Stream F	low Volume a	at LMMF:	370,056	Liters	conversion [ltrs = gal * 3.785]
Sp	oray Disposal	Volume:	302,800	Liters	conversion [ltrs = gal * 3.785]
	Mass in	Stream:	7,660	mg	conc. X vol.
	Mass in Grou	undwater:	3,634	mg	conc. X vol.
Tota	l Downgradie	nt Mass:	11,294	mg	sum of 2 masses
Total [Downgradient	Volume:	672,856	Liters	sum of 2 volumes
Predicted D	Downstream	Surface W	ater Concentration	on, at LMM	F:
			TDP		
			0.0168	mg/L	[sum of masses] / [sum of vols]
					· · · · ·
Predicted I	ncrease fron	n Upstream	to Downstream:		
			TDP		
			-0.0039	mg/L	OK: < 0.001 mg/L increase
			[decrease]		
<u> </u>			[20010000]		I

Pilot Test, Nutrient Removal by Drip Dispersal

Mass-Balance Calculations & Results:

INPUT PARAMETERS:			Notes:
Chemical Name:	NO3		Nitrate
		<u>units:</u>	
Downgrad. GW Concentration:	1.20	mg/L	Maximum Value of 3 final Samples, Nov. 2016 in-situ pilot test
Upstream SW Concentration:	0.243	mg/L	Upper 95% C.V., from 2014 Eddy Brook Stream Sampling data
IDP Standard:	2.0	mg/L	per IDRs
Type of Discharge:	Annual		drip dispersal
Stream Name:	Eddy Brook		
LMMF:	97,769	gpd	0.445 mi ² drainage area * 0.34 csm, converted to gpd
Disposal Rate:	80,000	gpd	
Dilution Ratio at LMMF:	1.22	to 1	
RESULTS:			
Stream Flow Volume at LMMF:	370,056	Liters	conversion [ltrs = gal * 3.785]
Spray Disposal Volume:	302,800	Liters	conversion [ltrs = gal * 3.785]
Mass in Stream:	89,887	mg	conc. X vol.
Mass in Groundwater:	363,360	mg	conc. X vol.
Total Downgradient Mass:	453,247	mg	sum of 2 masses
Total Downgradient Volume:	672,856	Liters	sum of 2 volumes
Predicted Downstream Surface	Water Concentration	on. at LMMF:	
	NO3	,	
	0.674	mg/L	[sum of masses] / [sum of vols]
			OK: < 2.0 mg/L.
Predicted Increase from Upstrea	am to Downstream:		
	NO3		
	0.431	mg/L	
	0.101		
	l]

Mass-Balance Calculations & Results:

Predicted D	Downstrea				
		NO3:	0.674	mg/L	OK: < 2.0 mg/L.
		TDP:	0.0168	mg/L	
Predicted I	ncreases f	rom Upstream to	o Downstream		
		NO3:	0.431	mg/L	
		TDP:	-0.0039	mg/L	OK: < 0.001 mg/L increase

Mass-Balance Calculations & Results:

Predicted [Downstrea				
		NO3:	0.674	mg/L	OK: < 2.0 mg/L.
		TDP:	0.0168	mg/L	
Predicted I	ncreases f	rom Upstream to	o Downstream	•	
		NO3:	0.431	mg/L	
		TDP:	-0.0039	mg/L	OK: < 0.001 mg/L increase

✓ SUCCESS!

Documentation of predicted compliance with Aquatic Permitting Criteria of Vermont's Indirect Discharge Rule.

Pilot Test, Nutrient Removal by Drip Dispersal

Capacity Determination Letter" issued 6/13/2018

66

State of Vermont

AGENCY OF NATURAL RESOURCES Department of Environmental Conservation Drinking Water and Groundwater Protection Division 1 National Life Drive, Main 2 Montpelier, VT 05620-3521

June 13, 2018

Craig Heindel Waite-Heindel Environmental Management 7 Kilburn Street, Suite 301 Burlington, VT 05401

RE: Capacity Determination for Bromley Best Farm Site Bromley Mountain Ski Area, Peru, Vermont

Dear Craig,

I am writing in response to the request for a Capacity Determination for a new Indirect Discharge of Sewage as specified in Subsection 14-402 of the Indirect Discharge Rules effective April 30, 2003 for the Bromley Best Farm site. The Indirect Discharge Program has reviewed the hydrogeologic capacity analysis, the evaluation of aquatic permitting criteria, and the results of the pilot test that was conducted on the site. We have also visited the site and looked at the soils in a select number of test pits.

The Indirect Discharge Program agrees that the proposed Best Farm disposal area, as depicted on Guntlow & Associates, Inc. C2 plan sheet, revised 3/27/18, can accommodate disposal of up to 80,000 gallons per day of tertiary treated effluent at a loading rate of 2.0 gallons per day per square foot of available area. This determination is based on a presumption that dual alternation will not be required when drip dispersal is included in the revision of the Indirect Discharge Rules. If dual alternation is still required for drip disposal systems after the revision of the Rules or any subsequent revisions, another system could be interfingered between the proposed 2' layout to provide up to 80,000 gallons per day of capacity for each system.

The Indirect Discharge Program also approves the proposed reduced setbacks to Eddy Brook and the unnamed tributary to Eddy Brook in the areas depicted on the above referenced C2 plan sheet given that the setback reductions are upgradient and side gradient of the disposal area. "The Indirect Discharge Program agrees that the proposed Best Farm disposal area, as depicted on Guntlow & Associates, Inc. C2 plan sheet, revised 3/27/18, can accommodate disposal of up to 80,000 gallons per day of tertiary treated effluent at a loading rate of 2.0 gallons per day per square foot of available area."

SUMMARY:

- 1. 5,020 GPD of treated domestic WW effluent were applied to a pilot dripdispersal field for 119 days in July through November 2016;
- 2. The pilot-test drip-dispersal field was 235 ft. x 10.7 ft. [2,515 sq.ft.]. Wastewater spiked with Sodium Bromide as a tracer was applied at 2.0 gpd/sq.ft. via frequent small-volume timed doses;

SUMMARY:

- 1. 5,020 GPD of treated domestic WW effluent were applied to a pilot dripdispersal field for 119 days in July through November 2016;
- 2. The pilot-test drip-dispersal field was 235 ft. x 10.7 ft. [2,515 sq.ft.]. Wastewater spiked with Sodium Bromide as a tracer was applied at 2.0 gpd/sq.ft. via frequent small-volume timed doses;
- 2. Soils at the drip-dispersal pipe depth [6" 12"] are sandy loams; underlying parent material is fine-to-medium sands, with occasional lenses of gravelly coarse sand;

SUMMARY [cont.]:

4. Total Dissolved Phosphorus and Nitrate were analyzed in samples collected from downgradient groundwater and effluent.

<u>Results</u>:

		Down-Gradient Groundwater				
	Effluent	Pre-Test End of Tes				
Parameter:	Mg/L	Mg/L	Mg/L			
TDP	1.9	0.017	0.012			
NO3	0.86	0.24	1.2			

SUMMARY [cont.]:

5. The water table beneath the disposal field was initially at ~ 15 ft. below the drip-dispersal pipes. It rose by 2.9 ft. after ~ 30 days, then remained stable. So ~ 12 ft. of unsaturated soil was maintained below the drip-dispersal field for the final 80 days of the test.

SUMMARY [cont.]:

6. The combination of drip-dispersal system with frequent small-volume timed doses of treated wastewater, plus sandy loam B-horizon and fine-to-medium sands below, plus deep unsaturated zone [12 to 15 ft.] provided more than 99% removal of Total Dissolved Phosphorus, and substantial conversion of Nitrogen to Nitrate.

Special thanks to the team members who participated in conducting this pilot test:

- Bill Beideman, Phil Talbot, Pat Gordon Bromley WWTP Operators;
- Bill Cairns, Michael Van Eyck Bromley Ski Area management;
- Rob Sarmanian, Don Ottenheimer -- Oakson; Gloucester, MA;
- Vince Guntlow, P.E.; Guntlow & Associates, Williamstown, MA;
- Endyne Laboratories, Williston, VT; Lebanon, N.H.; Plattsburgh, N.Y.

2019 NEIWPCC Onsite Short Course

Questions?

THANK YOU.

- Craig Heindel, C.P.G.; Senior Hydrogeologist, Waite-Heindel Environmental Management, Burlington, VT; <u>cheindel@gmavt.net; www.waiteenv.com</u>; 802-806-9400
- Rob Sarmanian, General Manager; Oakson; Gloucester, MA; <u>rob@Oakson.com</u>; <u>www.Oakson.com</u>; 978-282-1322
- Vince Guntlow, P.E.; Guntlow & Associates, Williamstown, MA; VinceG@guntlowassociates.com; www.guntlowassociates.com; 413-458-2198;
- Bill Cairns, General Manager; Bromley Ski Area, Peru, VT; bc@bromley.com; www.bromley.com; 802-536-1686.

2019 NEIWPCC Onsite Short Course

