OWTS : CONSISTENCY BETWEEN CERTIFICATION AND FIELD RESULT

Marie-Christine Bélanger, Product Director, Premier Tech Aqua

Roger Lacasse, Vice-President Research & Development, Premier Tech – Environmental Technologies Group

April 2019 6th Northeast Onsite Wastewater Treatment Short Course & Equipment Exhibition

Are OWTS performing in real conditions as they are supposed to and as per manufacturer's claims?

Is certification under controlled conditions enough to support those claims?

Should more extensive field performance demonstration be required?

What are the determining factors that will ensure consistency of results between certification and field results, and control and management over time of field performance?

Certification Programs

Main Certification Programs in the World

Certification Standards in USA

NSF/ANSI 40 Base

BNQ NQ 3680-910 NSF 40 + additional 6 months (reliability) + climatic zones

CAN/BNQ 3680-600

BNQ + 2nd 6-month @working parents flow + sampling @stress test period

North American Certification Programs Comparison

Let's look at the key differentiators of each program

Duration & Flow Regimen

Stress tests

Stress tests

ANSI / NSF Standard 40 & 245

BNQ NQ 3680-910

CAN / BNQ 3680-600

- Laundry day: 3 days of laundry over 5 days
- Parents at work: 40% of Q in the morning and 60% in the evening
- Power/equipment failure: 48-hour stoppage
- Vacation: No water supply for 8 consecutive days

Sampling Frequency

Sampling during stress tests

ANSI / NSF Standard 40 & 245

BNQ NQ 3680-910

CAN / BNQ 3680-600 All: Sampling **only** the 1st day of stress test sequence and 24h after full completion of the stress test sequence for 6 consecutive days

Power/equipment failure: 48h after completion of the stress test sequence for 5 consecutive days

For standard 245: No sampling during all the stress tests for Nitrogen parameters

All: sampling during stress tests for 5 consecutive days

Except for Power/equipment failure: 24h after completion of the stress test for 5 consecutive days

Audits & Temperature (climate)

Classification of performance

	Number of classes	BOD ₅ (mg/L)	TSS (mg/L)	Fecals or E. Coli (CFU/100mL)	P Total (mg/L)	N Total (mg/L)
ANSI/NSF Standard 40	1	25	30			
ANSI/NSF Standard 245	1					50%
BNQ 3680-910	5	150 25 15 15 15	100 30 15 15 15	<50,000 <200 (<200)	<1	
CAN/BNQ 3680-600	4 (combinaisons)	BI: 150 BII: 25 BIII: 15 BIV: 10	100 30 15 10	DI: <50,000 DII: <200 DIII: N.D	PI: <1 PII: <0.3	NI: 50% NII: 75%
ANSI/NSF Standard 350 (Class R)	1	Avg: 10 Max: 25	10 30	<14 <240		

Regulatory Context & Field Testing

PROTOCOL CRITERIA LOCAL REQUIREMENTS

PERFORMANCE EVALUATION

CONTROLLED CONDITIONS COMPLIANCE

ACCEPTABLE CONCENTRATIONS

REAL CONDITIONS

Certification Platform vs. field testing: What does it say?

Certification Platform

Nominal hydraulic loading

Source of wastewater: community (possibly diluted)

Established protocol (brand new system)

In-situ conditions

Hydraulic loading related to occupancy < nominal

Actual residential domestic wastewater (possibly not representative)

Impact of living habits & system aging

Materials and Methods

Methodology and data analysis

Statistical analysis developed by EPA

Goal = Determining Maximum Discharge Limit (MDL) in real conditions

Factors impacting MDL

- 1. Data distribution Delta log normal
- 2. Number of data
- 3. Average performance and standard deviation
- 4. Tolerance (95%) and probability (80%)
- 5. Number of field sampling events considered = 1

\sim

Possible MDL Result Range

Certification Data Sets

CERTIFICATION PROTOCOL	DURATION	STRESS TEST RESULTS	AVERAGE INFLUENT TEMPERATURE	n
ANSI/NSF standard 40	The entire 6 months Includes recovery period only		68°F (20°C)	114
CAN/BNQ 3680-600/2009 No stress	First 6 months only Annex A	Includes recovery period only	51°F (10.9°C) Cold climate conditions	106
CAN/BNQ 3680-600/2009 Stress only	Weeks 19 to 25 inclusively of Annex A	Stress tests and recovery period only	54°F (12.3°C) Cold climate conditions	27
CAN/BNQ 3680-600/2009 Annex A	The entire first 6 months Annex A	Includes stress tests and recovery period	52°F (11.2°C) Cold climate conditions	123

Field monitoring program	Years	Number of samples (n)
BNQ annual field performance audit program	2006 to 2016	140
North Carolina innovative system performance audit	2006 to 2008	35

Results

Calculation of MDL

With 95% certainty and 80% probability

Certification protocol			BOD ₅ (mg/L) TSS (mg/L)			Influent temperature °C				
Data set	n	k _{95,80}	Avg	StDev	MDL	k _{95,80}	Avg	StDev	MDL	
NSF	114	0.95	2.1	0.9	2.5	0.95	2.4	1.9	2.9	68 F (20 C)
CAN-BNQ No Stress	106	0.50	5.0	3.8	7.9	0.80	4.3	3.7	6.6	51 F (10.9 C)
CAN-BNQ Stress only	27	1.01	6.6	5.8	10.8	1.08	5.1	4.4	7.0	54 F (12.3 C)
CAN-BNQ All Annex A	123	0.58	5.5	4.5	8.5	0.81	4.4	3.6	6.7	52 F (11.2 C)

Model prediction

Importance of selecting the right certification!

- For a same technology, the expected concentration in the field (MDL) varies according to the certification protocol
- The more stringent the certification protocol the more realistic are the predicted field values

MDL expected field performance

BOD ₅	Calculated MDL	% of field monitoring results in compliance with the calculated MDL			
	(mg/L)*	BNQ Audit	NC Audit		
	Mean	3.8 ± 3.6	4.5 ± 9.3		
	Number of data	140	35		
ANSI/NSF standard 40	2.5	64%	69%		
CAN/BNQ 3680-600 Annexe A	8.5	92%	86%		
CAN/BNQ 3680-600 Annexe A Stress only	10.8	93%	90%		

* Based on delta-log normal distribution with a certainty of 95% and a probability of 80% of not exceeding that value in the field for a single sampling

Conclusions

An important missing factor

 Certification and field demonstration programs are performed on newly installed systems only

- Systems aging is not considered, it is assumed to be "factored in"
- Annual random field performance audit allows the assessment of system performance from ALL ages
 - Performed annually on sites randomly selected among ALL systems installed

Answering #1

Are OWTS performing in real conditions as they are supposed to and as per manufacturer's claims?

Yes! BUT...

Reliable information from actual conditions (reality) are a must to all stakeholders, from authorities to end-users, for the protection of public health and the environment!

Answering #2 Is certification under controlled conditions enough to support those claims?

Representative certification programs, in-depth understanding of these protocols and their limits, and adapted classification of performance are key

Samplings requirements, influent temperature, flow regimen, etc key elements of certification protocols

Answering #3

Should more extensive field performance demonstration be required?

MDL is a good tool to evaluate expected field performance of the systems.

MDL is as good as the certification protocol that was submitted with the product...it has to be representative of the actual living habits of endusers, their local climate conditions and usage.

Field testing should be used as a complementary measure when no certification program exists.

Answering #4

What are the determining factors that will ensure consistency of results between certification and field results, and control and management over time of field performance?

Have certification protocols representative of your reality. "Pick" the right one for you!

Stop spending \$ and time in field monitoring. Invest in annual random field performance audits.

All saved \$ and time should be invested in promoting and enforcing systems design conformity and sound regular inspection and maintenance of these systems and their follow-ups.

PREMIERTECH AQUA