Nitrogen Loading from Onsite Wastewater Treatment Systems in the Greater Narragansett Bay Watershed: Magnitude and Reduction Strategies

> Jose A. Amador Laboratory of Soil Ecology and Microbiology University of Rhode Island Kingston, RI

THANK YOU:

NARRAGANSETT BAY ESTUARY PROGRAM

Town of Charlestown, RI Homeowners

CO-AUTHORS:

- George Loomis
- Brittany Lancellotti
- Kevin Hoyt
- Ed Avizinis
- Bianca Ross
- Josef Görres

DISCLAIMER

Although the information in this document has been funded wholly or in part by the United States Environmental Protection Agency under agreement CE96184201 to NEIWPCC, it has not undergone the Agency's publications review process and therefore, may not necessarily reflect the views of the Agency and no official endorsement should be inferred. The viewpoints expressed here do not necessarily represent those of the Narragansett Bay Estuary Program, NEIWPCC, or EPA, nor does mention of trade names, commercial products, or causes constitute endorsement or recommendation for use.

Main Questions

- How does performance of advanced N-removal OWTS vary?
- How much N do OWTS contribute to the watershed & what can we do about it?
- How can we monitor N in effluent to improve performance?

N affects ground and coastal waters:

Performance of Advanced N-Removal OWTS

Lancellotti, B.V., G. Loomis, K. Hoyt, E. Avizinis, and J.A. Amador. 2017. Evaluation of nitrogen concentration in final effluent of advanced nitrogen-removal onsite wastewater treatment systems (OWTS). *Water, Air and Soil Pollution* 228:383-298.

Project Design

http://www.orenco.com/sales/choose_ asystem/index.cfm http://www.biomicrobics.com/product s/fast-wastewater-treatmentsystems/microfast/

http://www.septitech.com/staar-residential/

Distribution of TN Concentrations March 2015 - August 2016

Advantex Systems

FAST Systems

SeptiTech Systems

Scaling Compliance Rates

Based on Applications as of January 2016

http://www.orenco.com/sales/choose_asystem/index.cfm

3,740 Total Applications 35% Out of Compliance (1,309)

http://www.septitech.com/staar-residential/

231 Total Applications 50% Out of Compliance (115)

http://www.biomicrobics.com/products/fast-wastewater-treatment-systems/microfast/

725 Total Applications 36% Out of Compliance (261)

Median TN Concentration

Greater Narragansett Bay Watershed, RI vs. Barnstable County, MA

Percentage of Systems in Compliance Greater Narragansett Bay Watershed, RI vs. Barnstable County, MA

Differences in Regulations

Rhode Island

- 2 maintenance visits required/year
 - Focus on mechanical function
 - No effluent sampling
 - 19 mg TN/L standard

Barnstable County, MA

- 4 maintenance visits required/year
 - Effluent sampling required
 - 19 mg TN/L standard
- Online management database
 - Tracks maintenance visits
 - Tracks effluent constituent levels
 - Alerts when effluent does not meet standards
 - Triggers a corrective action

Nitrogen inputs from OWTS to the watershed

Amador, J.A., J.H. Görres, G. Loomis, and B.V. Lancellotti. 2018. Nitrogen loading from onsite wastewater treatment systems in the Greater Narragansett Bay (Rhode Island, USA) Watershed: Magnitude and reduction strategies. *Water, Air and Soil Pollution* 229 (3): 65.

We realized we had an interesting data set...

Table 1. Median, maximum and minimum values of daily wastewater flow, total N concentration, and daily mass load of N from conventional and advanced N-removal OWTS used in this study.

System type	I.	Wastewate	Total	N concen	tration		Mass load of N					
		(L/d)		(mg N/L)		(g N/d)					
	Median	Max	Min	n	Median	Max	Min	n	Median	Max	Min	n
Conventional	472	960	68	158	74	180	40	169	31.1	73.8	10.4	157
AX-20	471	1557	4	304	16	82	0	268	10.8	55.7	0.1	252
FAST	476	1843	4	239	17	105	1	213	10.1	96.2	0.1	213
SeptiTech	374	1837	17	170	25	108	1	192	9.6	55.7	0.3	142

...that could answer interesting questions:

- What's the relationship between total N, N load & flow?
- What is the N load from different OWTS to the watershed?
- How does OWTS N load compare with WTP?
- How can we lower OWTS N load?

Relationship between total N, N load & flow

Nitrogen load from OWTS to watershed

First, we need to count OWTS...

	Statewide = 125,000
	Watershed = 120,265
	Our analysis included 105,833 systems:
<u> </u>	101,098 Conventional (95.30%)
<u> </u>	3,740 AX-20 (3.53%) 270 SeptiTech (0.26%)
<u> </u>	725 FAST (0.69%)

Then we need the distribution of N loads...

Lancellotti et al. (2017) and Loomis et al. (2004)

Then we fly to Monte Carlo...

Table 2 Results of Monte Carlo simulation of N load from conventional and advanced N-removal onsite wastewater treatment systems (OWTS) within the Greater Narragansett Bay watershed (Rhode Island, USA). The simulation was based on a total of 105,833 systems within the watershed. The simulation assumes no removal of N after effluent is dispersed to the soil treatment area

Scenario	Distribution of technologies (%)				Change from current scenario (no. of systems)				Simulate	xd N load:	Difference (kg N/year) from				
									Daily (g N/system/ Yearly (kg N/system/ day) year)			kg N/system/	Yearly—all (kg N/year)	Current case	Worst case
	Conv.	Septi	FAST	AX	Conv.	Septi	FAST	AX	Mean	SD	Mean	SD			
Worst Case	100.00	0	0	0	4735	-270	- 725	- 3740	32.914	0.050	12.01	0.02	1,271,436	53,898	0
Current	95.53	0.26	0.69	3.53	0	0	0	0	31.519	0.070	11.50	0.02	1,217,539	0	- 53,898
1	86.08	0.26	10.13	3.53	- 10,000	0	10,000	10,000	29.500	0.070	10.77	0.02	1,139,557	-77,982	- 131,880
2	76.63	0.26	19.58	3.53	- 20,000	0	20,000	20,000	27.608	0.060	10.08	0.02	1,0664,54	-151,085	- 204,983
3	48.28	0.26	47.93	3.53	- 50,000	0	50,000	50,000	21.096	0.230	7.70	0.08	814,908	-402,631	- 456,528
4	86.08	9.70	0.69	3.53	- 10,000	10,000	0	0	29.383	0.081	10.72	0.03	1,135,040	-82,498	- 136,396
5	76.63	19.15	0.69	3.53	- 20,000	20,000	0	0	27.176	0.082	9.92	0.03	1,049,778	-167,760	- 221,658
6	48.28	46.30	0.69	3.53	- 50,000	50,000	0	0	21.563	0.072	7.87	0.03	832,959	-384,579	- 438,477
7	86.08	0.26	0.69	12.98	- 10,000	0	0	10,000	28.751	0.044	10.49	0.02	1,110,634	-106,905	- 160,803
8	76.63	0.26	0.69	22.43	- 20,000	0	0	20,000	26.086	0.048	9.52	0.02	1,007,692	-209,847	- 263,745
9	48.28	0.26	0.69	50.78	- 50,000	0	0	50,000	18.154	0.061	6.63	0.02	701,280	-516,258	- 570,156
10	48.28	19.15	14.86	18.65	- 50,000	20,000	15,000	15,000	20.703	0.240	7.56	0.09	799,726	-417,813	-471,711
All Septi	0	100	0	0	- 101,098	105,833	- 725	- 3740	11.937	0.081	4.36	0.03	461,134	-756,405	- 810,303
All FAST	0		100		- 101,098	-270	105,833	- 3740	10.157	0.969	3.71	0.35	392,336	-825,202	- 879,100
All AX	0			100	- 101,098	-270	- 725	105,833	4.141	0.017	1.51	0.01	159,948	-1,057,591	- 1,111,489

Advanced OWTS make a difference...

- Worst case:
 - Conv. = 100%
- Current:
 - Conv. = 95.30%
 - AX-20 = 3.53%
 - SeptiTech = 0.26%
 - FAST = 0.69%
- Δ = -45,790 kg N/yr
 (3.5% less N)

But things could be better...

- Field's Point WWTP:
 Pop. = 226,000
 - POP. = 220,000
- OWTS in GNBW:
 - Pop. = 267,618
- 5-fold difference in per capita N inputs

*Ignores N removal in soil, ground water, landscape

We could change distribution of OWTS...

We could require recursive monitoring...

Differences in Regulations

Rhode Island

- 2 maintenance visits required/year
 - Focus on mechanical function
 - No effluent sampling
 - 19 mg TN/L standard

Barnstable County, MA

- 4 maintenance visits required/year
 - Effluent sampling required
 - 19 mg TN/L standard
- Online management database
 - Tracks maintenance visits
 - Tracks effluent constituent levels
 - Alerts when effluent does not meet standards
 - Triggers a corrective action

Monitoring Tools

Lancellotti, B. V., R. J. Bercaw, G. W. Loomis, K. P. Hoyt, E. J. Avizinis, and J. A. Amador. 2016. Accuracy of rapid tests used for analysis of advanced onsite wastewater treatment system effluent. *Water, Air and Soil Pollution* 227:310.

Ross, B. N., G. W. Loomis, K. P. Hoyt, and J. A. Amador. 2018. User-based photometer analysis of effluent from advanced nitrogen-removal onsite wastewater treatment systems. *Water, Air and Soil Pollution* 229:389.

Evaluation of Rapid Field Tests

Rapid Field Test Methods (outdoors)

Alternative Rapid Field Test Methods (outdoors)

Enter the Field Photometer!

Can be used to estimate TN from ammonium and nitrate

Conclusions

- How does performance of advanced N-removal OWTS vary?
 - Compliance is good (50% 65%)
 - Can be better (Barnstable County, MA)
- How much N do OWTS contribute to the watershed & what can we do about it?
 - 1.2 million kg N per year
 - Advanced OWTS make a difference to N inputs
 - But per capita N inputs for OWTS 5X for WTP
 - Gradual replacement
 - Monitor to improve performance
 - Combination
- How can we monitor N in effluent to improve performance?
 - May be able to monitor effluent total N inexpensively with photometer