

DR. SARA HEGER <u>SHEGER@UMN.EDU</u> SEPTIC.UMN.EDU

Media Filter Presentation Overview

- Description
- Definitions
- Operation and types of media filters
- Management

Media Filters: Miniature WWTP

- Biological process is well understood
- Distribute wastewater over media
- Dispersed directly under or collected after the filter and dispersed

Media Filters - Description

- Consist of a watertight structure containing media of particular specifications.
- After being collected in a processing tank, effluent is distributed evenly (pressure, or gravity) over the surface of the media
- The media provides surface area for bacteria and other microorganisms to treat the effluent
- Aerobic treatment zone

Definitions

- Filter, media device that uses materials designed to treat effluent by reducing BOD and/or removing suspended solids in an unsaturated environment; biological treatment is facilitated via microbial growth on the surface of the media.
- Filter, bottomless media: media filter that does not incorporate a liner or other physical barrier between the media and the existing soil on which it has been placed; used as a final treatment and dispersal component.

Definitions Cont'd

- Filter, peat: media filter that uses appropriate organic fibric material (peat) as the media; typically packaged as pre-fabricated modular units with the media in a container; a type of biofilter.
- Filter, sand: media filter which uses sand of particular specifications as the media.

Definitions Cont'd

- Filter, textile: type of media filter which uses nonrigid, synthetic material of varying shapes and configurations; typically packaged as pre-fabricated modular units.
- **Recirculating:** design configuration wherein a portion of effluent is returned to a component for further treatment or to facilitate a treatment process.
- **Recirculation ratio:** proportion of effluent returned to the treatment component compared to the amount of forward flow to the next component of the treatment train.

Media Filter - Treatment Process

- Wastewater applied in small doses
- Percolates over media in thin film
- Organisms on media contact wastewater
- Air is maintained in media pores
- Oxygen is transferred into the thin film and to organisms
- Aeration may be active or passive

Treatment in media filters

Four main processes:

1. Physical filtration and sedimentation

• Screens out solids

2. Chemical sorption

- Adsorption to media surface
- Biological growth adheres to media

3. Assimilation

O Microorganisms transform material into another chemical state

4. Decomposition

Organic wastes break down into similar compounds

Effluent Quality Before and After Media Filter						
	BOD mg/L	TSS mg/ L	NO ₃ - N mg/L	NH4-N mg/L	DO mg/ L	Fecal Coliform Org./100 ml
Septic Tank	130 - 250	30 - 130	0 - 2	25-60	<2	10⁵ – 10⁷
Media Filter	5-25	5-30	15-30	0-4	3-5	10² - 10⁴

Theory of Operation

- Organisms are "fixed" on the surfaces of media
- Small dose of WW effluent is to the filter
- WW is treated as it moves over media surfaces in contact with organisms

Media Filter Effluent

- Low in Oxygen demand (BOD5) -- >90% removed
- Low in total solids (TSS) and volatile solids (VSS) -- > 90% removed
- Will not form a significant biological clogging mat in soils
- Low in pathogens
- Significantly reduced Total Nitrogen in recirculation mode:
 - Typical removal range is 40-60% removed
 Up to 80% removal

Uses of Media Filters

- Environmentally sensitive areas
- Soils that are not acceptable for septic tank effluent
 - Hydraulically slow
 - Inadequate vertical separation
- Systems with large flows
 - To mitigate impact of subsurface dispersal
 - Allow a higher application rate to soils
- As a means of meeting secondary treatment levels or TN reduction

Benefits of Media Filters

- Reduce organic matter, pathogens, some nutrients
- Produce an effluent that:
 - Reduce biomat in soil absorption systems when applied at reasonable rates
 - Can be subjected to tertiary treatment, if needed, and surface discharged
 - × Further nutrient removal
 - × Disinfection
 - Can be applied to a wider range of soils than septic effluent
 - Can be applied to soil at higher loading rates

Types of Media Filters

<u>Single-Pass Media Filters</u>

- Granular (sand, glass, etc.)
- Foam (synthetic)
- Peat (organic)

<u>Recirculating / Trickling Filters (multipass)</u>

- Granular (sand, gravel, bottom ash, etc.)
- Foam or plastic
- Textile

Single Pass Media Filters

- Septic tank effluent is dosed to the media filter
- Wastewater pass over media once then is discharged to the soil
- Single pass filters are effective in reducing BOD, TSS

Recirculating Media Filters

- Wastewater is treated by mixing effluent that has passed through the media bed with raw septic tank effluent.
- Filtrate from the media filter is split so that a portion returns back to the recirculation tank, and a portion goes out for final dispersal.
- <u>Recirculating</u> media filters are effective in reducing BOD, TSS and 40-60% <u>total nitrogen</u>.

Media Filter

- Recirculating systems have increased nitrogen removal
- Why?
 - Ammonia converted to nitrate in media filter (aerobic)

• Effluent goes to recirculating tank

× Nitrate converted to nitrogen gas via denitrification

Forms and Fate of Nitrogen

Septic Tank Organic N Decomposition & Hydrolysis → NH₃

Recirculation Tank Nitrification $NH_3 \rightarrow NO_2^- \rightarrow NO_3^-$ Denitrification $NO_3 - \rightarrow N_2$

Filter

Nitrification $NH_3 \rightarrow NO_3^-$ Denitrification $\rightarrow N_2$ Soil Treatment System Absorption \rightarrow NH₃ Denitrification \rightarrow N₂ NO₃⁻ \rightarrow Groundwater

Benefits of Recirculation

• Filter receives diluted effluent

- Can apply effluent at a greater loading rate Less odor
- Smaller filter surface area needed for given flow
- Can withstand somewhat higher strength incoming wastewater
- Can cope with flow variations, including peak flows
- Can adjust for variations in flow and strength through varying recirculation ratios

Flow Splitter Simple Foat Valve

- Valve mounted in recirc. tank on filter drain return line
- When valve is closed
 All flow goes to final dispersal
- When valve is open
 All flow drops into tank
- Set timer for correct total daily flow to filter for proper recirculation ratio.

Media Characteristics

- Home for microbes
- Solid material
- Surface area
- Porosity
- Biomass return
- Clogging potential
- Cleaning/replacement

Natural Media Types

- Sand and gravel
- Expanded shale
- Cinders
- o Limestone
- o Activated carbon
- Peat or peat fiber
- Coconut husks

Most common in single pass filters

Manufactured Media Types

- Textile fabric
- Open cell foam cubes
- Hard plastic
- Crushed recycled glass
- Chipped recycled tires
- Processed slag

• Usually used in recirculating modes

Foam Filters

Peat Filters

Puraflo[®] Nutrient Reduction

+30% Nitrogen reduction in single pass intermittent system +50 to 70% Total Nitrogen reduction achieved by recirculating half of the offluent back to the pump tank +Little or no Phosphorous removal unless designed for that purpose

Holes in bottom can be plugged to divert effluent to a pc or distant dispersal area.

Ecoflo Biofilter

Other Media

Other media such as "whiffle balls" – Some call these trickling filters

Other Mediums

E-Z TREAT RECIRCULATION SAND/MEDIA FILTERS

Sand and Gravel Filters

- May be designed and constructed to operate in either single pass or recirculating mode
- Sand/Gravel media must meet a specific specification
- Must (generally) be processed to provide the right gradation
 - Sometimes crushed
 - Screened for proper gradation
 - o Washed
- Must be handled carefully after processing to maintain the specification and remain free of fines

Biological Processes

- Biofilm forms on sand grains
- Oxygen around the film promotes aerobic activity
- Many species are present at all times
- Most are in the upper 12 inches
- Insufficient food and oxygen limit aerobic organisms in lower layers
- Most BOD removal occurs in the top few inches
- Organic matter is consumed by microbes in the biofilm

Important Biological Design Parameters

• Choice of media

- Surface area
- Void space

Provision for aeration

- Active
- o Passive

Small doses of wastewater applied uniformly Keeps flow in the biofilm – i.e. unsaturated flow Provides residence time in thin films on surfaces Prevents displacing air from voids

More on Biological Processes

- Nitrogen removal is a biological process
- Nitrifying bacteria convert ammonium-N (NH₄) and organic-N to nitrate-N (NO₃)
- Most conversion to NO₃ occurs in the top 12 inches
- In small pores and lower in the filter, oxygen concentrations are reduced and some Denitrification can occur in smaller saturated pores, releasing nitrogen gas (N₂)

Single Pass Filter Layout

Importance of Media Specification

- Correct media is an important factor in determining the useful life of a sand filter
- Media availability is an issue is some areas
- If material that fits the media spec is not available, consult an engineer.
 - If media is too fine filter will clog with biomat
 - If media is too coarse effluent quality may be reduced, but only slightly
- Smaller, more frequent doses can partially compensate for somewhat coarser media

Liner Installation

Orifice Orientation

Upward directed orifices

- Required to have oriface shields
- Less prone to clogging
- Less flow as the network fills and pressurizes
- A few orifices must point downward to drain pipe
- Require special provision for drainage
 - × Network set to drain back to pump chamber no check valve
- Downward directed orifices
 - More prone to clogging
 - A few orifices up are required to allow air back into pipe

Flow Equalization

- In order to maintain a non-saturated environment flow distribution dosing is important
- Enough to keep the media wet to keep microbes alive
- Not too much so system does not get overloaded or cause bypass issues...ie bridging

Design for Maintenance

Inspection ports – 3 recommended

- To infiltrative surface-
- At the bottom of the media
- o Just above the liner /container

• Cleanouts - provide for flushing of distribution laterals

- Access to dead end laterals
- o Continuous, low rate flushing
- Alternating flow direction

Provide for aeration

- Regular, continuous
- Catastrophic rejuvenation

Prevent storm water infiltration

Access to Components Is Critical

- Risers to grade
- Easy-to-reach quick disconnects for pump removal
- Floats on separate mount that is easy to remove
- Control boxes within sight of pump chamber riser
- Convenient sampling locations

Media Filter Start-UP

- Information needed:
- Forward flow through system in gallons
 Water use records or assumed
- Pump delivery rate (PDR) in gpm
 Run draw down test
- Pump ON time in minutes
 - o From design, manufacturer

Start-Up Measurement of Pressure at the End of Laterals

- Minimum Head is 5 ft
- Clear tube that can be screwed in or attached to laterals allows easy determination of head
- Head increase over time may mean clogging of orifices

Pressure Distribution Network

Maintenance on Filters

- Maintenance should be performed at least annually, preferably more often (as required by operating permit)
- Owners should hire knowledgeable service provider
- First visit should be within the first few weeks/months of use
 - To catch construction damage or errors
 - To be sure controls/alarms are set correctly for the use pattern
 - To check for leaks, including leaky tanks
 - To advise owner/resident on filter use
 - To be sure landscaping does not add depth, compact or cause other damage

Routine Maintenance for Filters

- The septic tank(s) should be inspected periodically and pumped as needed
- Flush pressure pipe network
- Check pressure at end of laterals: compare with previous
- Check filter surface for ponding
- Check pump controls for proper operation
- Read pump run-time meter and event counter
- Check pump voltage (off and while pumping) and amp draw while pumping
- Pull and observe the final effluent in a clear sample bottle checking for clarity and odor.

Management Plans

• Developed for Proprietary treatment systems:

- o Bord na Mona Puraflo
- Premier Tec Ecopod
- o Orenco Advantex

• Public domain

- Single pass sand filters
- Reciruclating sand filters

Aerobic Treatment Can Help Søtye Problems!

• May be a solution if:

- Not enough vertical separation or if soil is coarse
 - × Effluent has fewer pathogens
- Site is too small
 - × Reduced BOD/TSS may allow for less square footage
- Waste is high strength
 - × Reduce BOD/TSS
- System is near or failing
 - × May recover due to reduced BOD/TSS
- Nitrogen is a problem
 - × Some systems reduce nitrogen

Summary

- ATUs and Media Filters can provide reliable, long term service and excellent effluent quality if they are:
 - Properly sited
 - Properly designed
 - Properly used by the owner/occupant
 - Properly maintained on a regular basis

Questions