2019 Northeast Onsite Wastewater Short Course

April 2-4, 2019 Mystic Marriott Hotel Groton, Connecticut

A to Z Wastewater Characteristics John R. Buchanan **University of Tennessee** April 2-4, 2019 **Nowra**

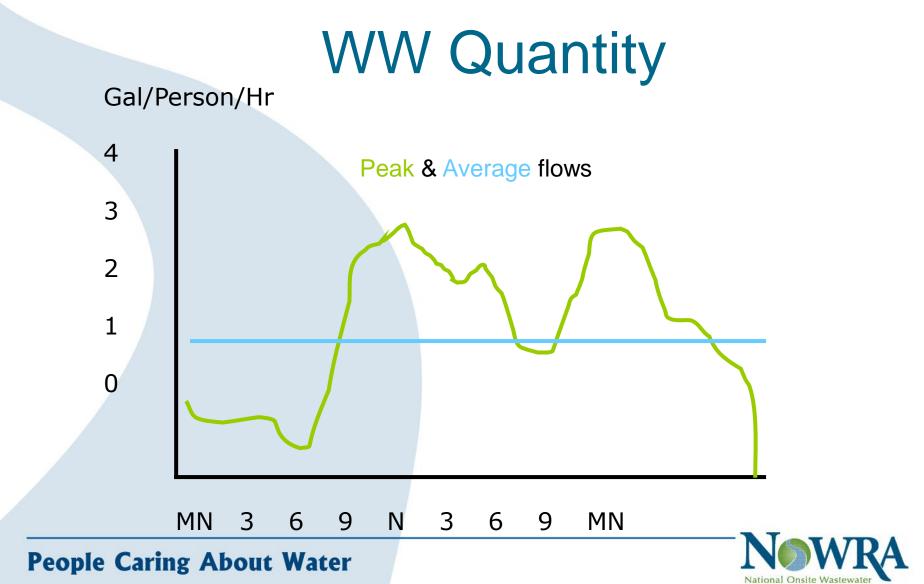
National Onsite Wastewater Recycling Association

Objectives

- Understand the sources and flows of wastewater in a home = Quantity
- Understand the different constituents in wastewater = Quality
- Understand treatment of wastewater from a physical and biological perspective
- Be able to apply this knowledge in the field

Typical Water Use

- Regulations say 100 150 gallons per day per bedroom
 - Assumes 2 people per bedroom
- 50-75 gallons/person/day
- Annual estimates of use
 - Per person per year = 28,000 gal = 76 gpd
 - Typical home ~ 3 persons = 84,000 gal/yr

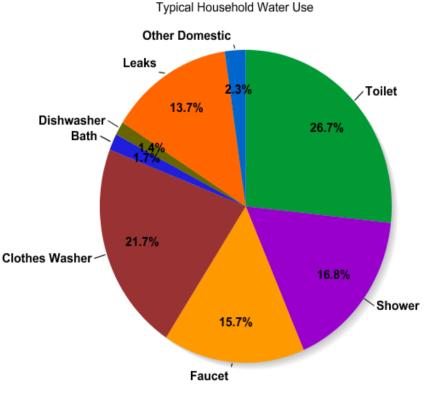

Residential Wastewater Flows

Study (gal/pers/day)	No. Residence:	Dura s (mon		rage Range ers/day)
Brown & Caldwell (1984)	210		66.2 ^a	57.3 – 73.0
Anderson & Siegrist (1989)	90	3	70.8	65.9 – 75.6
Anderson, et al. (1983)	25	2	50.7	26.1 – 85.2
Mayer et al. (1999)	1188	1 b	69.3	57.1 – 83.5
Weighted Ave.	153		68.6	

Table 3-1 pg, 3-3 in US EPA Manual, 2002

^aBased on indoor water use monitoring and not wastewater flow monitoring ^bBased on two weeks of continuous monitoring in each of two seasons at each home

Recycling Association


Wastewater

- Quantity or flow rate
 - Design for peak flows
 - EPA estimates 70 gal/person/day
 - EPA has charts for businesses
 - Measure if possible
 - Failures often due to hydraulic overload
 - Install water meter or pump meter

Where Does it Come From?

- Water use:
 - Bathroom ~ 64%
 - Toilet = 27%
 - Bathing = 19%
 - Faucets = 8%
 - Laundry = 22%
 - Kitchen = 10%
 - Leaks = 14%

American Water Works Association, 1999

Bathroom 64%

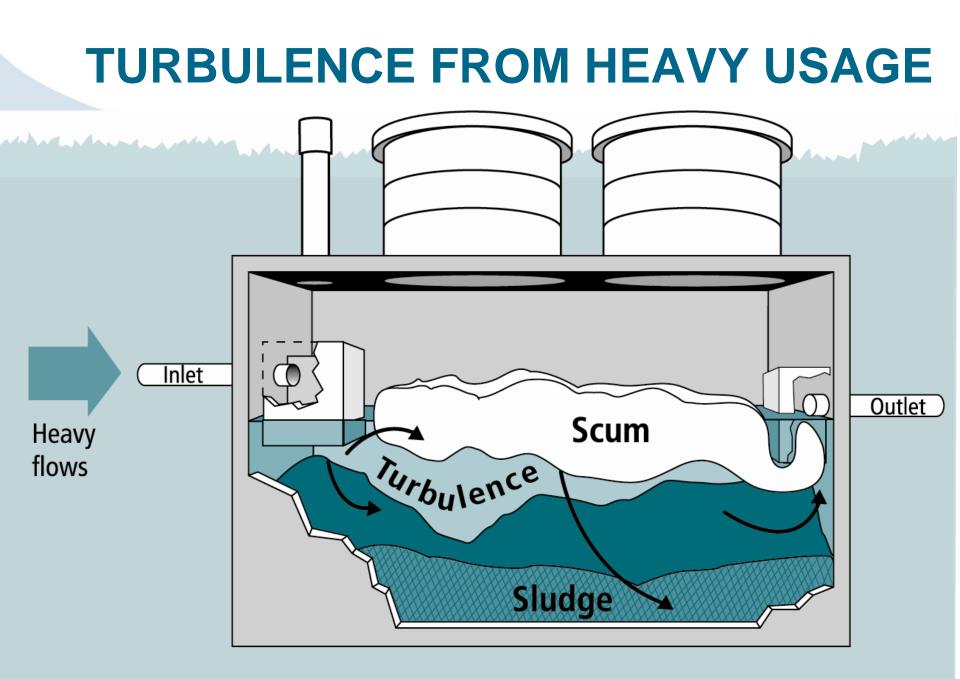
- Only urine, feces, soap, toilet paper and limited amounts of cleaner should be going down drain
- No wipes, feminine products, prophylactics, cigarette butts, etc
- No every flush toilet bowl sanitizers or every shower cleaner

Bathroom Continued

- Old used 5 gallons per flush
- Almost all new toilets are 1.6
 gallons per flush or less
- Newest toilets have choice of flush for #1 (half flush) or #2 (full flush)
- Overall water usage may not have changed a lot as people bathe and wash hands more

No Flow Toilets

- Composting, electric/incinerating, chemical toilets
- Different management of black water
 - Majority of nitrogen removed
- Grey water system can be reduced in size



Laundry 22%

- Consider adding a lint filter
- Loads should be spread out

Detergents and Bleaches

- Use high quality
- More is not better
- Powdered
 - Careful of cheap products:
 - Inorganic materials and clay as fillers
 - Add fine particles
- Liquid
 - Filler is typically water
- Do NOT use liquid fabric softeners

People Caring About Water

National Onsite Wastewater Recycling Association

Kitchen 10%

- A full dishwasher uses less water than washing dishes by hand
- Some dishwashers have garbage disposals built in
- Fat, oils and grease should poured down drain

Garbage Disposal

- Adds more solids
- Undigested food chopped into small pieces increases the load on a system
- More water use
- Increases the need for maintenance and care of the system.
- Recommendation:
 - Don't install one
 - Don't use it if you have one

Estimating Water Use

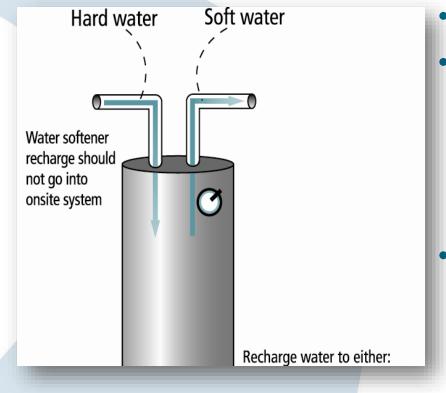
- Bedrooms
- Unfinished space
- High water using devices
- Multi-generation families
- Home based business

Measuring Actual Flows

- Methods
 - Meter
 - Pump
- Units
 - Gallons
 - Cubic feet

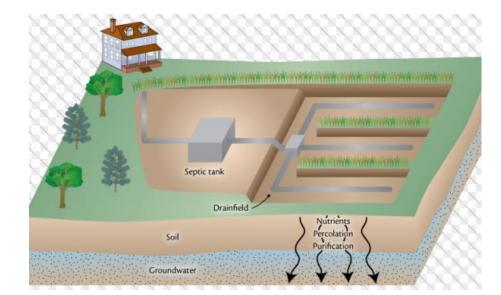
-7.5 gallons in 1 cubic foot

What is NOT Part of the Flow


- Clear water
 - Rain water/sump pump discharge
 - Water softener recharge water or other water treatment device
 - Treated water (hot tubs and pools)
- What to do with it?
 - On surface or below surface in separate trench
 - Do not put on neighbors property or into lake, river or stream
 - Recommended setback from wells is 20 ft

National Onsite Wastewater Recycling Association

Water Softener Recharge Water


- Does NOT require treatment
- Impact to system:
 - Adds water
 - May affect tank stratification
 - May damage the concrete or other components like pumps
- Management
 - Discharge to different place
 - Reduce recharge frequency

Wastewater Treatment

Goal of onsite/decentralized systems

- Treat wastewater
 - Environmentally safe
 - Safe for humans
- Return to environment

Wastewater Treatment

- Physical treatment
 - Settling of heavier materials
 - Floating of lighter materials
 - Filtering by size
- Biological treatment
 - Microorganisms breakdown waste
 - Biological reactions

Biology - Microorganisms

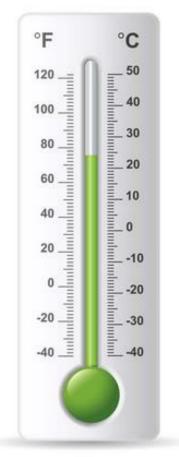
Source

- Human waste
- Laundering/bathing
- Food waste

Biology - Microorganisms

Microorganisms affected by:
– Presence/absence of oxygen
– Temperature
– Chemicals
– Medications

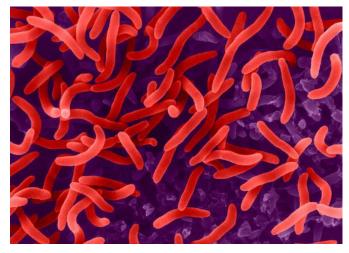
Oxygen Requirements


- Aerobic organisms require free oxygen
 from atmosphere
 dissolved oxygen (DO) in water
- Anaerobic do not need free oxygen
 get energy using other compounds
- Facultative can live in either environment
 - Aerobic
 - Anaerobic

Temperature

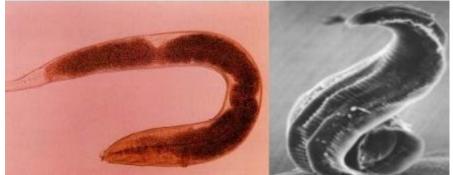
- Some organisms thrive in high temperatures
- Some thrive in moderate temperatures
- Some like it cold
- Usually, chemical reactions and biological growth occur more rapidly in warmer temperatures.

Chemicals and Meds


- Excessive chemical use can cause microorganisms to die off
- A very large percentage of medications are secreted in the urine
- Flushing of medications should never happen

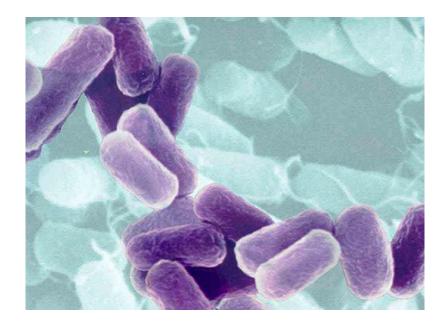
Pathogenic Microorganisms

- Cause
 - Cholera
 - Typhoid
 - Salmonella
 - Shigella
 - Water-borne diseases
- Fecal coliform – Indicator



Pathogenic Microorganisms

- Viruses
 - Hepatitis A
 - Acute gastroenteritis
 - Polio
- Parasites
 - Protozoa
 - Amoebiasis
 - Giardia
 - Cryptosporidiosis
 - Worms
- Roundworm
 People Caring About Water



Helpful Microorganisms

- Treat Wastewater
 - Anaerobically
 - Septic tank
 - Aerobically
 - Treatment systems
 - Most soil-based treatment
 - Facultative
 - Use wastewater constituents as food source

Raw Sewage Characteristics

Component	Range	Typical
TSS	155 – 330 mg/L	250 mg/L
BOD ₅	155 – 286 mg/L	250 mg/L
рН	6 -9 s.u.	6.5 s.u.
Total Coliform	10 ⁸ – 10 ¹⁰ CFU/100mL	10 ⁹ CFU/100mL
Fecal Coliform	10 ⁶ – 10 ⁸ CFU/100mL	10 ⁷ CFU/100mL
NH ₄ -N	4 - 13 mg/L	10 mg/L
NO ₃ -N	Less than 1 mg/L	Less than 1 mg/L
Total Nitrogen	26 – 75 mg/L	60 mg/L
Total Phosphorus	6 - 12 mg/L	10 mg/L

mg/L = milligrams per liter s.u. = standard units CFU/100 mL = Colony-Forming Units per 100 milliliters,

People Caring About Water Adapted From: US EPA 2002

Total Suspended Solids (TSS)

Source

- Food waste
- Human waste
- Laundering & bathing
- Concern
 - Collect in septic tank
 - Clog soil in drainfield
 - Turbidity (cloudiness) in surface water
- Amounts (TSS)
 - Range 155 330 mg/L
 - Typical 250 mg/L (raw)

Measuring Total Suspended Solids

- Total suspended solids (TSS)
 - Run sample thru 0.45 micron filter
 - Solids remaining on filter are SS
 - Solids passing through are dissolved

Biochemical Oxygen Demand

- BOD
- Indirect measure of organic matter
 - Measures amount of oxygen used by microbes to breakdown organic matter
 - 5 day, 20° C (68° F) test
 - Measured in mg/L
- Amounts in wastewater
 - Range 155 286 mg/L
 - Typical 250 mg/L

Organic Matter

- Large contributor to BOD
- Digested and undigested animal and vegetable material
- Contain carbon
- How treated?
 - Some is removed in septic tank
 - Effluent screen helps reduce further
 - Serves as food source for microorganisms

Nutrients

Nitrogen

 TKN
 Nitrate (NO₃⁻)
 Nitrite (NO₂)

 Phosphorus

 Phosphate (PO4)

Nutrients

Source		
- Food waste		
– Human was	te	
– Detergent (F	>)	
Amounts	Range	Typical
-TKN	26 – 75 mg/L	60 mg/L
– NO3	< 1 mg/L	< 1 mg/L
– Total P	6 - 12 mg/L	10 mg/L

Nutrients

- Concern
 - Water quality fresh water
 - surface (P)
 - groundwater (N)
 - Human health
 - Nitrate blue baby syndrome
 - Carcinogen?
 - Birth defects? (Canada, Australia)

Nitrogen

NO₃

Moves readily with water as NO₃⁻

H

Threat to groundwater

Phosphorus

- Binds with other minerals in the soil called complexes
- Complexes do not dissolve in water –
 insoluble
- P moves if soil particles move (erosion)
- Some P is used by vegetation
- Soils have limits to the amount of P they can bind

FOG or O & G

Fats

- Animal-based (lard)
- Solid at room temperatures
- Relatively easy to treat
- Oils
 - Plant-based (corn oil, soybean oil)
 - Liquid at room temperatures
 - More difficult to treat
- Grease
 - Petroleum-based
 - May act like oils or fats

Wastewater - FOG

- Source
 - Food waste
 - Body oils, lotions
- Concern
 - Clog soil in drainfield
- Amounts
 - -<30 mg/L

Inorganic Solids

- Minerals, metals and salts from soil material, plumbing, make-up
 - Inert and not subject to decay
 - Causes clouding of water (turbidity)
 - Plugging of soil pores
- How treated?
 - Stored in septic tank and removed when septic tank is pumped
 - Effluent screen helps reduce further

Other Things

- Volatile Organic Compounds VOCs
 - Paint, solvents, paint thinners
 - Cleaning chemicals
 - Hobbies
- Pharmaceuticals & Personal Care Products – PPCPs
 - Human waste from showering and urine
- Concern
 - Water quality & human health
 - Effect on treatment system

Commercial, Industrial, Recreational Wastewater

- Quantity and quality vary greatly
 - Restaurants
 - Seasonal Campgrounds
 - Butcher shops
- Collect samples and measure flow rates if possible
- Resources
 - Onsite Wastewater Treatment and Disposal System Design Manual, US EPA. 1980.
 - Other professionals with experience

Summary

- Know your wastewater
 - Is the quantity and quality going to be "normal" or "typical"?
 - Are the characteristics or activities at the location that would cause it to be different?
- The system needs to be able to treat the wastewater that is produced
 - Aerobic conditions in the drainfield and/or with added treatment
 - Good microorganism population

jbuchan7@utk.edu WWW.NOWRA.ORG INFO@NOWRA.ORG QUESTIONS ?

