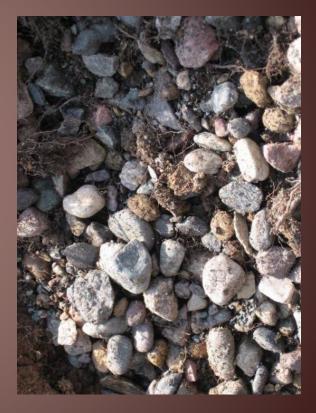
Critical Aspects During System Installation and Inspection

A to Z

Presentation Topics

- Overview
- Material issues
- Site related issues
 - Erosion
 - Wet sites
 - Proper elevation and grade


Proper installation is REALLY important!

 Using good material and techniques are critical for long term system performance

 If site or soils are negatively impacted the ability for site to treat and accept wastewater long term will be decreased

Media specifications

- Installer must make sure media available meets specifications of system designer and codes!
 - Know what material to ask for
 - Get documentation that material is what you ordered
 - Know what it should look like
 - Know how to double check if needed
 - Document with pictures

Treatment media - Sand

- Treatment media in:
 - Filters
 - Mounds
- Washed to be free of silt and clay particles (fines <5%) to prevent system failure
- Check design & local code for allowable amount

Bucket cleaning

- When installing media in soil treatment systems & media filters a clean bucket is *essential* to avoid contaminating media
- Scrape out all soil before handling media

Fines reduce treatment performance

- Fines migrate to bottom and form a restrictive layer
 - Holds effluent and water in pore space
 - Effluent and water wicked upwards into media due to capillary action
 - Reduced pore space
 - Less air transfer
 - Less space for sloughing of biomass to move through media

Sand quality tests

- Conduct jar test as a field check
- Verify clean sand using a sieve test

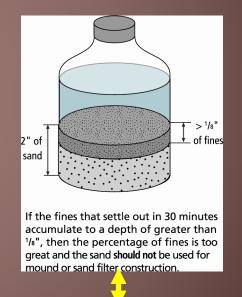
Jar test – field procedure - I

 Place two inches of sand in the bottom of a quart jar

Jar test – field procedure - II

Fill the jar 3/4 full of water
 Cover
 Shake for 1 – 2 minutes

Jar test - field procedure - III


• Allow jar to stand for 30 minutes

30 minutes

Jar test - field procedure - IV

- Measure layer of fines on top of sand
- Layer should measure less than 1/8"

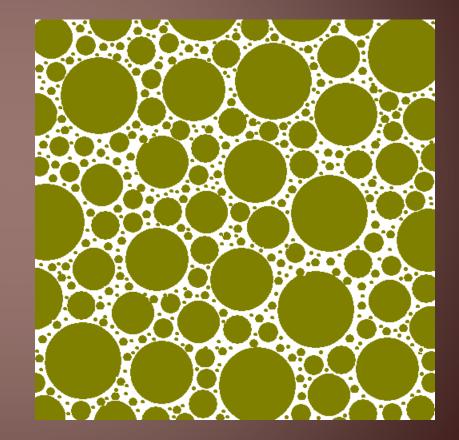
Jar test example

- > 1/8" ~
- More then 5% fines
- Send back and request sieve analysis on next load

Sand size characteristics

- Specific size
- Uniformity coefficient
- Effective size
- Sieve test is a method to characterize the size of the sand

Sieve analysis


• Soil sample is placed on top sieve and run through a shaker to separate different size grains

Material collected from each sieve is weighed and the point data plotted

Uniformity coefficient (UC)

- How well graded your sand sample is
- UC = 1 material uniform in size
- UC > 1 less uniform wide range of sizes
- Range of sizes of particles is important due to pore space

Sand moisture content

- When evaluating various sources for clean sand, observe the moisture line in the sand piles
 - Treatment issue if moisture line is high, there are fines more water wicking upward
 - Economic issue wet sand weighs more than dry
 - Installation issue wet sand can be installed without a problem as it will compact easier than dry sand

Sand media installation

- Mounds and media filters
- Sand installed in lifts of 6-8 inches
- Foot compaction and light watering to reduce volume of pore spaces
- In mounds, after 6-12 inches of media has been installed tracked equipment maybe allowed across area
- Compaction equipment should not be used

Distribution Media

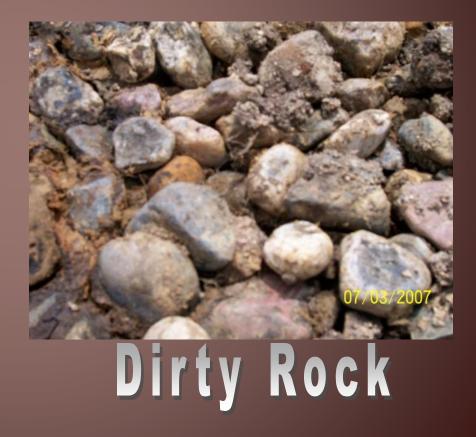
- Drainfield rock
- Rock substitutes
 - Chambers
 - ADS
 - Infiltrator
 - Geocomposites
 - Infiltrator Ezflow
- Gravel less pipe
- Drip distribution

Rock characteristics - hardness

- Hardness is an important characteristic as soft rock can break into pieces reducing void capacity
- If a penny can scratch a rock without crumbing and flaking it is OK
- Rating of > 3 on the Moh's Scale of Hardness

Rock characteristics - size

Uniform size is preferred to provide maximum void space


Rock characteristics - size

- 1/2 2 1/2 inches
- Quarry/pit should provide gradation information

Rock characteristics - "clean"

- The rock must be "clean" as dirty rock has fines (silt and clay particles)
- These fines can cause system failure because they will reduce the long term acceptance rate of the underlying soil or media

Checking rock for cleanliness

- Is there a large dust cloud when the media is dumped?
- Verify quarry results for cleanliness and other characteristics

• Use field jar test to check the cleanliness of rock

Soil treatment area backfill

- Suitable native soil material for backfill and cover must be free of:
 - Debris
 - Clods
 - Frozen soil
 - Peat

Soil treatment area backfill

- Material should:
 - Allow oxygen to get to the soil treatment system
 - Shed surface water
 - Support the growth of vegetation

Storing materials

- Contamination risk
- Try not to store materials install them immediately
- If media is stockpiled, keep different types separate
 - Clean sand
 - Clean rock
 - Pea gravel
 - Backfill, cover and topsoil

Stockpiling

- Bottom portion lost due to mixing with native soil unless materials are placed on a
 - Tarp
 - Concrete pad
 - Plywood
- For long term stockpiling, cover with plastic

Erosion control

- Cover bare Soils
 - Smart work
 - Work in dry weather
 - Preserve existing vegetation
 - Cover with mulch, plastic, rock
 - Temporary seed
- Slow down water
 - Smart grading
 - Benches and berms
 - Slope roughening
 - Ditch blocks

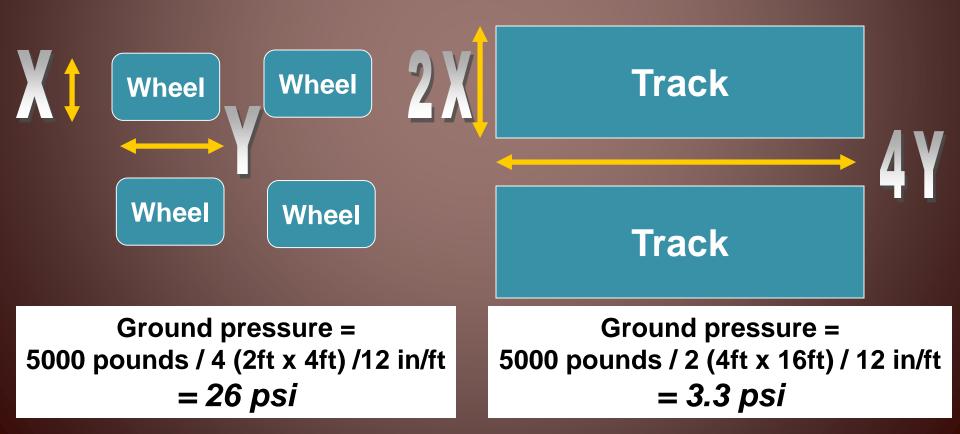
Erosion control practices

- Grading
 - Cat tracking
- Vegetation
- Mulch
- Blankets
- Riprap

- Down drains
- Hydraulic soil stabilizers
- Compost
- Erosion control mats

Stop sediment

- Buffers
 - Leave the grass
- Trap water and hold it
 - Silt fence
 - Ponds
- Filter water
 - Compost logs
 - Rock and mulch barriers


Concerns for installations on wet sites

- Installations on sites with:
 - High water tables
 - Soil textures with high clay content
- Compaction and smearing are more likely
- Soil must be treated carefully
- Check weather before starting construction & be prepared

Ground pressure

 For same piece of equipment, ground pressure will be much higher with wheels

Considerations for installations on wet sites

- Excavation only when:
 - Moisture content less than the plastic limit
 - Soil is not frozen

Protecting exposed natural soil

- If site has been scarified, immediately cover with media to prevent
 - damagecontamination
- When you can't cover exposed soil immediately, protect area with tarp

Maintaining natural soil conditions

- Soil located at or near the soil surface is generally the best for:
 - Treatment
 - Internal drainage
 - Dispersal
 - Oxygen-transfer
 - Evapotranspiration
 - Natural biological activity
 - Biochemically more reactive

Compacted soil problems

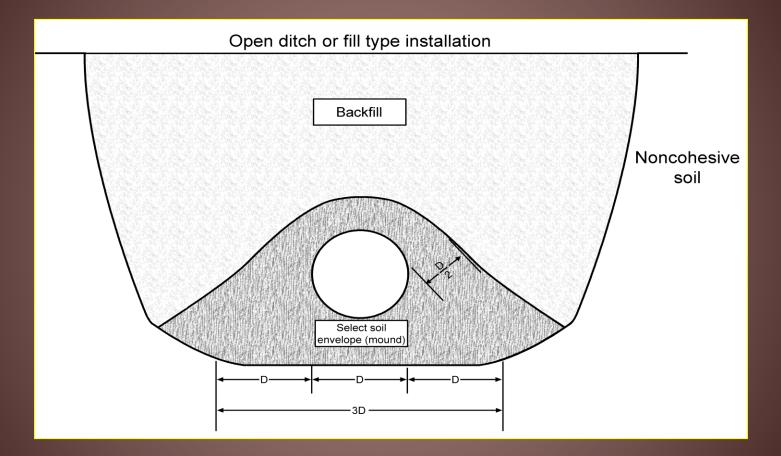
- Compacted soil has:
 - Less pore space
 - Reduced air and water movement
 - Reduced permeability and oxygen transfer

Techniques to maintain natural soil conditions of infiltrative surface

- Do not drive any equipment on infiltrative surface
- Limit foot traffic
- Rake sidewalls of trenches and beds
- Use low ground pressure equipment
- Position equipment upslope of system when placing media

Compacted site – what to do?

- Avoid compaction
- Discuss options with Designer/Local unit of government
- Determine severity
- Move system location
- Time will help
 - Freeze/thaw
 - Root activity
 - Weathering
- Experimental methods
 - Lower loading rates
 - Mechanical soil fracturing
 - Deep plowing/ripping
 - Removing & backfilling

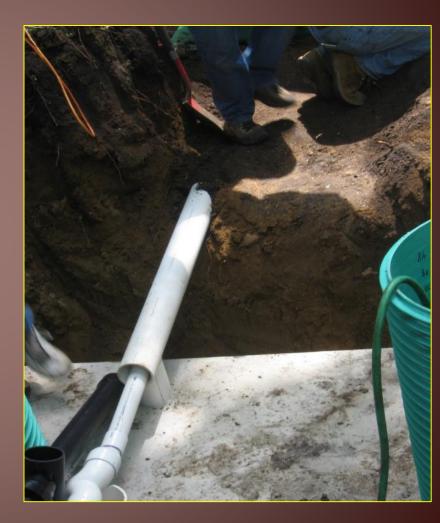


Pipe trench

- Trench bottom
 - Dry
 - Free of rocks & debris
 - Continuous
 - Provides uniform support

Pipe trench

Tracer wire????


Pipe layout

- PVC will expand or contract:
 - 3.36" per 100' of pipe per 100°
 F change in temp
 - Example
 - 30 ° F of temp change
 - = 1 inch of expansion/contraction
- Solutions
 - Snake pipe
 - Install during cooler part of day

Pipe sleeving

- Use in areas where pipe needs additional support
 - Under driveways, roads, structures
 - Wastewater pipe close to water lines or crosses water lines.
 - Underlying soil is disturbed

Pipe sleeving methods

- Place a larger and stronger pipe around smaller pipe:
 - Helps support pipe
 - Prevents bowing
 - Where debris gets caught
 - Spray insulation:
 - Prevents soil backfill from filling pipe

Key points with glued connections

- Fittings
 - Correct size & pressure rating
- Surface
 - Cleaned and primed
- "Cleaners" aren't "primers"
 Primer dissolves 2 surfaces
- Apply enough glue to fill gap between pipe and fitting

Standard set times for PVC piping*

The necessary time to wait before the joint can be carefully handled

Temp Range	Pipe Size ½ to 1¼ inch	Pipe Size 1½ to 3 inch
60° -100° F	15 min	30 min
40° – 60° F	1 hr	2 hr
0° – 40° F	3 hr	6 hr

* Check label as some are fast set

Standard cure times for PVC pipe

 The necessary time to wait for full strength rating & before pressurizing the system

RELATIVE HUMIDITY 60% or Less*	Pipe Size ½″ to 1¼″	Pipe Size 1½″ to 3″
Temperature Range	≤ 180 psi	
60° – 100° F	1 hr	2 hr
40° – 60° F	2 hr	4 hr
0° – 40° F	8 hr	16 hr

Over-excavation

- Should be avoided whenever possible by the use of a laser
- Stability is essential when backfill is needed

Why over-excavate?

- Some site conditions require it:
 - Shallow bedrock
 - Organic peat soils
 - Large diameter trees and rocks
 - Loose fill material
 - Soil substitution
- Construction mistakes
- In these situations, proper backfilling/bedding is very critical to assure components are stable

Selecting bedding materials

- Key issues are:
 - Can the material be effectively compacted?
 - Is there potential that water will collect in the area where material is being installed?
 - Note areas with more bedding materials will settle more (A versus B) if not properly compacted

Compaction equipment

- Machine or mechanism used to reduce the volume of soil through compaction
- Two main types of compactors:
 - Plate
 - "Jumping jack"

Where do we use a compactor?

- Pipe bedding
- At bottom and along sides of tank excavation area
- Around modular media filters and ATUs

Where do we not use a compactor?

- In media filters
- Soil treatment areas particularly infiltrative surface and absorption area
- Around fragile components which could be damaged

Questions ?

