Nutrient overload occurs in both fresh and salt water bodies. The effects of nitrogen are widely known, but those of phosphorus (P) are evolving in salt water. This research is a culmination of sampling and literary analysis that determines the effects of phosphorus on our coastal waters.

The two overarching goals of the project are:

Goal one is to determine the P levels in the estuaries surrounding the Cape and compare to the known hypoxic zones.

Goal two is to determine applicability of lake phosphorus remediation techniques to the estuaries.

The levels were read in mg/L and the five areas and values ranging from unreadable to 0.015 for P and 0.13 for N with none of the P samples exceeding 0.1 mg/L which is the limit for contents in a healthy lake.

The hypothesis was not validated due to overwhelmingly low results of P in the sampling locations. The results concluded that the P levels were low enough to not be problematic in comparison to detrimental N levels. The levels were read in mg/L and the five areas and values ranging from unreadable to 0.015 for P and 0.13 for N.

The reduction of hypoxia zones in connection to eutrophication is important as this phenomenon ruins the environment, economy, and human health. Cape Cod’s contribution of N to the coastal waterbodies is through the abundance of septic systems leaching into the groundwater, whereas the results for P point towards a reduction due to, already in place, techniques for agricultural practices aimed at reducing N.