New England Wetlands Webinar Series
New Tools to Assess Wetland Condition

March 10, 2016
Agenda

• Welcome and Introductions (10 min.)
• New Tools to Assess Wetland Condition (45 min.)
• Brief Q&A (5 min.)
• Discussion (30 min.)
• Wrap-Up
Webinar Moderator

Kimberly Roth,
Environmental Analyst,
Wetlands Program
NEIWPC
kroth@neiwpcc.org
Since 2007, Kate has worked as a Plant Ecologist for the National Park Service Inventory and Monitoring Program, and is based out of Acadia National Park. Kate develops and implements long-term vegetation monitoring programs in northeastern parks, including for forests, freshwater wetlands and salt marshes. Kate has a BS in Natural Resources from Northland College and an MS in Ecology and Environmental Sciences from the University of Maine (2006). Kate is currently in a PhD program (started in 2014) at the University of Maine in the School of Biology and Ecology.
NEW TOOLS TO ASSESS CONDITION OF FRESHWATER WETLANDS IN THE NORTHEASTERN US: MULTIMETRIC INDICES FOR VEGETATION, SOIL CHEMISTRY, ALGAE TAXA, AND WATER CHEMISTRY

Kate Miller, Plant Ecologist
Webinar Outline

- NPS Inventory and Monitoring Program
- Need for regional wetland assessment tools
- Multimetric Indicator (MMI) Development
- MMI Results and Discussion
- Predicting MMIs with land use and RAM metrics
NPS Inventory and Monitoring Program

- 32 Networks covering more than 270 park units
- Baseline inventories
- Long-term monitoring
Northeast Temperate Network
Wetland Monitoring in Acadia NP

• 10 Sentinel Sites
 • EPA National Wetland Condition Assessment (NWCA)
 • Continuous water level monitoring

• 40 Rapid Assessment Sites
 • USA-RAM developed by EPA
 • Timed search to develop plant species list
Need for Regional Assessment Tools

Current assessment tools

• State level indicators
• Floristic Quality Assessment Index
• EPA Vegetation Multimetric Indicator (MMI)
EPA NWCA Plot Design

Overall Plot

Assessment Area
- Site, Water & Algae
- Soil Pit
- Vegetation

40m

100m
Objectives

- Develop MMIs using NWCA data (Stoddard et al. 2008)
 - Vegetation
 - Soil chemistry
 - Algae taxa
 - Water chemistry
- Determine if condition of the surrounding landscape can predict condition of the wetland
Wetland MMI Construction

Preliminary Step

• Determine which plots to include in MMI development
 • NMDS with % cover of plant species
 • Started with over 200 freshwater sites from eastern US
 • Removed plots until Lat/Long are not the first gradient
NMDS Results: 166 plots
NMDS Results: Disturbance Gradient

- Disturbance Type:
 - Reference
 - Intermediate
 - Most

- Variables:
 - Buff Width
 - Hummocks
 - Water Stress
 - Habitats Stress

- Axes:
 - NMDS1
 - NMDS2
 - Lat
 - Long
NWCA Sites by Wetland Type
Step 1: Determine least (REF) & most (MOST) disturbed sites

- Number of stressors in buffer plots, weighted by distance from center (same as EPA)
- REF: Handpicked using BPJ & no stressors in buffer plots
- MOST: Total of 2 or more stressors in buffer plots
Step 2: Find metrics that separate by disturbance type

- Compare box plots and t-statistics
- Metrics not strongly correlated ($r < 0.7$)
- Not correlated with natural gradients
- Signal:Noise ≥ 2
Step 3: Combine metrics into MMI

- Convert metrics to 10-point scale and combine
- Convert combined index to 100-point scale
- Calculate thresholds between Good, Fair and Poor
- Rate each site using thresholds
Vegetation MMI
Metrics Tested
• Species Richness
 • Native
 • Invasive
• Index of Wetness
• % Cover by Life Form
 • Woody
 • Graminoid
 • Bryophytes
• Coefficients of Conservatism
 • FQAI, FQAI’ & Mean C
 • Weighted Mean C & FQAI
 • % Cover tolerant (C: 1-4)
 • % Cover sensitive (C: 7-10)
Vegetation MMI

Disturbance Class

Mean C

Mean C

% Exotic Cover

% Exotic Cover

% Bryophyte Cover

% Bryophyte Cover

% Cover Tolerant Spp.

% Cover Tolerant Spp.
Soil MMI

Metrics Tested

- % Total Carbon, Nitrogen & Sulfur
- Bulk Density
- pH in H_2O and CaCl_2
- Cation Exchange Capacity
 - Ca, K, Mg, Na conc.
- Extractable acidity
- Phosphorous concentration
- Trace Elements (n=21)
- % Al, % Fe, % Mn
- % Clay and Silt
Algae MMI

Metrics Tested

- Microcystin
- Natural Units per mL
 - Genus (n=193)
 - Blue-green algae
 - Cryptophytes
 - Diatoms
 - Dinoflagellates
 - Green algae
Algae MMI

Disturbance Class

Eunotia
- REF
- INT
- MOST

Gomphonema
- REF
- INT
- MOST

Fragilaria
- REF
- INT
- MOST

Nitzschia
- REF
- INT
- MOST
Water MMI
Metrics Tested

- Conductivity
- Ammonia (NH$_3$)
- Nitrate + Nitrite conc.
- pH
- Total Nitrogen
- Total Phosphorus
- Chlorophyll A
Water MMI

- Conductivity (µS/cm)
 - REF
 - INT
 - MOST

- pH
 - REF
 - INT
 - MOST

- Total P (µg/L)
 - REF
 - INT
 - MOST

Disturbance Class
MMIs with Thresholds

Veg. MMI

- REF
- INT
- MOST

Algae MMI

- REF
- INT
- MOST

Soil MMI

- REF
- INT
- MOST

Water MMI

- REF
- INT
- MOST

Disturbance Class

- REF
- INT
- MOST
NMDS Results: MMIs
Vegetation MMI Ratings

Veg. MMI Ratings
- Good
- Fair
- Poor
- No Sample Taken
Soil MMI Ratings

Soil MMI Ratings
- Good
- Fair
- Poor
- No Sample Taken

Copyright © 2014 Esri
Algae MMI Ratings

- Good
- Fair
- Poor
- No Sample Taken
Water MMI Ratings

- Good
- Fair
- Poor
- No Sample Taken
Freshwater Wetland Multimetric Index Calculator

Vegetation MMI

<table>
<thead>
<tr>
<th>Vegetation MMI</th>
<th>Mean C_{all}</th>
<th>% Exotic Cover</th>
<th>% Bryophyte Cover</th>
<th>% Tolerant Cover</th>
<th>VMMI Score</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter Values</td>
<td>6.2</td>
<td>25</td>
<td>50</td>
<td>20</td>
<td>60.84</td>
<td>Fair</td>
</tr>
</tbody>
</table>

Metric 1: Mean C_{all} is the average Coefficient of Conservatism (CofC) for all species on the plot, and ranges from 0-10.

Metric 2: % Exotic Cover is the cover of all exotic and cryptic (e.g., *Phalaris arundinacea*) species, and ranges from 0-100.

Metric 3: % Bryophyte Cover is the cover of all bryophyte species on the ground, and ranges from 0-100.

Metric 4: % Tolerant Cover is the cover of native species with a CofC ≤ 4, and ranges from 0-100.

For more information about the MMIs, refer to the following publication:

Available at go.nps.gov/MMI
MMI Results and Discussion

- MMIs included widely used metrics to assess wetland condition: % Exotic Cover, pH, Conductivity, P
- Vegetation MMI metrics may be applicable to sites sampled by non-NWCA protocols
- Algae was weakest MMI because of strong Lat/Long gradients in taxa
- Most applicable to depressional, flats or slope wetlands, with precip. and poorly buffered groundwater as main water inputs
Predicting MMIs with Land Use and RAM metrics
Random Forest Analysis- Phase 1

Objective

• Assess how well surrounding land use and USA-RAM metrics can predict each MMI

Predictor variables included

• % of land cover types within a 500 m and 1 km buffer around the center of the AA using 2011 NLCD

• USA-RAM metrics
Random Forest Analysis - Phase 2

Objective

• Assess how well surrounding land use, USA-RAM metrics and Vegetation MMI can predict other MMIs

Predictor variables included

• All metrics in previous analysis
• VMMI score, % Bryophyte Cover, Mean C, % Exotic Cover, and % Tolerant Cover
Random Forest Results - Vegetation MMI

Level 1 and 2 variables

Variable Importance Plot

43.61% of Var. Explained
Random Forest Results - Vegetation MMI
Level 1 and 2 variables
Observed vs. Predicted
$R^2=0.51$
slope=0.46
Random Forest Results - Level 1 & 2 variables

<table>
<thead>
<tr>
<th>Variables with High Importance Values (strong predictors)</th>
<th>VMMI</th>
<th>SMMI</th>
<th>AMMI</th>
<th>WMMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Agriculture 1km buffer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Agriculture 500m buffer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>% Cultivated crops in 1km buffer</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>USA-RAM Metric 4: # Indicator</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>% Hayed/Pasture land 1km buffer</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Forest 1km buffer</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>% Wetland 1km buffer</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>% Emergent wetland 1km buffer</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>% Hayed/Pasture land 500m buffer</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>% Herbaceous upland 1km buffer</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>% Variance Explained</td>
<td>43.61</td>
<td>45.05</td>
<td>14.17</td>
<td>33.55</td>
</tr>
<tr>
<td>R^2 of pred. vs. obs.</td>
<td>0.51</td>
<td>0.50</td>
<td>0.06</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Random Forest Results - Level 1 & 2 + VMMI

Variables with High Importance Values (strong predictors)

<table>
<thead>
<tr>
<th>Variables</th>
<th>SMMI</th>
<th>AMMI</th>
<th>WMMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMMI Score</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VMMI: % Bryophyte Cover</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VMMI: % Exotic Plant Cover</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VMMI: Mean C</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>% Agriculture 500m buffer</td>
<td>1</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>% Hayed/Pasture land 1km buffer</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>% Forest 1km buffer</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>% Herbaceous upland 1km buffer</td>
<td>7</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>% Variance Explained</td>
<td>66.55</td>
<td>41.08</td>
<td>48.88</td>
</tr>
<tr>
<td>R^2 of pred. vs. obs.</td>
<td>0.71</td>
<td>0.29</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Summary of Random Forest Results

- Land use metrics can provide a decent estimation of which wetlands are likely in the poorest condition.
- The addition of a site visit to collect vegetation data will improve assessment of soil and water condition.
- The results validate our monitoring approach in ACAD.
 - Intensive sampling in a few sites (10 sentinels).
 - USA-RAM and vegetation at many sites (40 sites).
Acknowledgements

EPA NWCA
Gregg Serenbetz
Teresa Magee
Annie Rossi
Mary Kentula

Brian Mitchell, NPS
Brian McGill, UMaine
Northeast Temperate Network
54 Elm Street, Woodstock, VT 05091
Web: http://go.nps.gov/netn
Facebook: facebook.com/NPS.NETN

National Park Service
U.S. Department of the Interior

EXPERIENCE YOUR AMERICA
Discussion
Thank you

Next Webinar

April 14, 2016
Featuring Lisa Rhodes, MassDEP
Chicopee Watershed Monitoring and Assessment: Summary and Findings

Missed an episode?
Visit: neiwpcc.org/wetlands/webinars

Questions and Comments?
Kimberly Roth
kroth@neiwpcc.org
978-349-2525