Diesel Soap – Formation and Related Problems

Richard L. Chapman
BP Global Fuels Technology

National Tanks Conference
Boston, MA
September 21, 2010

The views stated in this presentation are that of the author and are not necessarily endorsed by the author’s employer, BP. As such, the views of the author should be attributed to him and not to BP.
Background – Why the Concern About Diesel Cleanliness?

- HPCR (High Pressure Common Rail) diesel injection systems are cleaner burning, less polluting engines, but need cleaner fuel;

- BP began surveying state of diesel fuel cleanliness in the marketplace and how to make it cleaner;

- BP’s fuel cleanliness studies led to diesel soap problem;
 - Possible link to fuel corrosion?
 - Many blocked filters contain diesel soap and rust;

- Theory possibly explaining this soap-corrosion phenomenon;
What is Diesel “soap” and why is it a problem?

• Diesel soaps – what are they?
 – Metal carboxylates form from corrosion inhibitors, lubricity improvers, etc. and tank water bottom cations (e.g. sodium, calcium, etc.);

• Soaps tend to plug filters (both dispenser and vehicle);
 – May cause fuel dispensing equipment to malfunction;
 – May possibly lead to fuel injection system deposits;
 – Soaps also contribute to lingering haze problems even though dissolved water is only 100 ppm or so;
 – Similar problems with gasoline also found;

• If available corrosion inhibitor in fuel reacts to form metal soaps and/or is less fuel soluble, it may leave fuel more corrosive and lead to rust and corrosion problems. BP has found that the two typically go hand in hand;
Making Diesel Soap – Filter Rig & Bench Top

- Two methods of making diesel soap have been used;
 - BP Dispenser Filter Rig – 10 gallons fuel w extra corrosion inhibitor and salt;
 - BP Bench Top Blender – 1 liter fuel in Waring blender as above;
 - Many corrosion inhibitors from multiple manufacturers studied;
- Filter rig hard to clean, switched to blender exclusively;
- Hazy samples form soaps in the sample container bottom within minutes; “Synthetic” CI’s seem to make more soap.
- Removing excess water doesn’t stop fuel from continuing to generate soap;
- Samples can remain hazy for months;
Diesel Soap Test -- BP Dispenser Filter Rig
Diesel Soap Test – Soap Formation

10X Magnification

10X Magnification
• Ordinary ULSD was treated with 25 ppm of a common acid type corrosion inhibitor and also with 25 ppm of a partial “synthetic” inhibitor (from same manufacturer);
 – Both samples made similar amounts of soap – CI with synthetic component made slightly more;
 – Resulting particulate identified by analytical methods as sodium carboxylates (metal soap);
Base ULS2 tested at a “D” NACE;
 – “Soaped” sample #1 (25 ppm common Cl) = “B”;
 – “Soaped” sample #2 (25 ppm common Cl + synthetic) =“B”;

Samples sat undisturbed for 2 weeks and retested for NACE corrosion:
 – Both samples tested at “E” NACE (worst rating)
Samples tested for NACE at refinery, at pipeline breakout terminals and at destination (product) terminals. Examples of the test results were:

- Refinery = “A/B++” (B\(^+\) or better is passing)
- Pipeline Breakout Terminal = “D/E”
- Destination Terminal = “D/E”

Lubricity improver added at terminal improved product to “B” or “C” (B\(^+\) is normal) -- means customers are generally protected, but distribution system assets (tanks/pipelines) may be affected.

Similar trends observed with gasoline on occasion;

Instances are believed to be rare -- however the fact that they have been observed means that it can happen.
Metal soaps are easily formed in minutes mixing ordinary ULSD with common corrosion inhibitors and salt-laden water;

Corrosion inhibitors both with and without a synthetic component make soap, though synthetics typically make more;

Resultant fuel can become corrosive due to corrosion inhibitor being “used up” by soap formation;

Corrosive fuel can lead to tank and piping corrosion piping in as little as 3 weeks (probably less);

Metal soaps have been shown to pass through ordinary dispenser filters – some is removed, but not all of it;

Even if fuel is filtered, soaps can keep forming in storage tanks.
Diesel Soap Study – Conclusions/Recommendations

• New information suggests that common corrosion inhibitors make nearly as much soap as common inhibitors with synthetic component – full “synthetic” CI’s previously shown to make the most soap;

• Study suggests corrosion inhibitor can be used up quickly and possibly lead to fuel with less corrosion protection soon after entering distribution systems;
 – Could this be one of the reasons for increased corrosion complaints?

• New corrosion inhibitor chemistries may be needed? Chemistries in use for many years may no longer be adequate –
 – Higher treat rates don’t seem to consistently provide the corrosion protection needed with new ultra low sulfur fuels;

• More study is needed to evaluate the efficacy of corrosion inhibitor through the distribution system;

• Time to think about a retail NACE corrosion specification (both diesel and gasoline)?
Richard L. (Rick) Chapman
Sr. Product Quality Advisor
BP Global Fuels Technology – Naperville
150 W. Warrenville Road, Mail Code J8
Naperville, IL 60563
(630) 420-4904 Office
(630) 386-3406 Mobile
richard.chapman@bp.com