Inaugural Research Webinar

Research Plan to Advance the Understanding of Potential Coastal Green Infrastructure Strategies in New York City

March 24, 2015

NEIWPCC

NEIWPCC

- Established in 1947 by an Act of the U.S.
 Congress
- One of six congressionally authorized, nationally recognized interstate agencies
- 501(c)(3) Not-for-Profit Organization
- Compact member states and jurisdictional area include: New York, Rhode Island, Connecticut, Massachusetts, Maine, Vermont and New Hampshire

NEIWPCC

NEIWPCC Mission

The New England Interstate Water Pollution Control Commission, a not-forprofit interstate agency established by an act of Congress, serves and assists its member states individually and collectively by providing <u>coordination</u>, <u>public education</u>, <u>research</u>, <u>training</u>, <u>and</u> <u>leadership</u> in water management and protection in the New England region and New York State.

NEIWPCC

Hudson River Programs

NEIWPCC has administered program staffing and finances for 15 years!

Two multi-year contracts with NY for two distinct programs

Current combined-total: \$14,000,000+ for efforts through 2020

- Hudson River Estuary Program
- Hudson River National Estuarine Research Reserve

Hudson River Programs

Estuary

- 8 full-time staff
- 3 office locations
- ▲ ~\$2M annual budget
- Resource management, climate change, green infrastructure, education, improving access

Research Reserve

- 3 full-time staff
 Norrie Point Env.
- Center. (Staatsburg)
- ~\$300k annual budget
- Research, sustainable shoreline, stewardship and conservation, education, sea-level rise

Kristin Marcel

- Climate Resiliency Project Coordinator, Hudson River Estuary Program
- NYS Department of Environmental Conservation
- Kristin.Marcell@dec.ny.gov
- (845) 256-3017

NEW YORK Department of STATE OF OPPORTUNITY Environmental Conservation

Jessica Fain

- Planner, Waterfront and Open Space Division
- NYC Department of City Planning
- ♦ jfain@planning.nyc.gov
- (212) 720-3525

NEIWPCC

Today's Presenter

Hugh Roberts, PE

- Associate Vice President, ARCADIS
- National Integrated Planning and Numerical Model Lead
- Hugh.Roberts@arcadisus.com
- (303) 885-4433

NEIWPCC

Contributing Authors

ARCADIS

- Haihong Zhao
- Hugh Roberts
- Jessica Ludy

Stevens Institute of Technology

- Andrew Rella
- Jon Miller
- Philip Orton

NYC Parks

Jamie Ong, Marit Larson

Scape Landscape


Kate Orff, Gena Wirth, Lauren Elachi

The Nature Conservancy

 George Schuler, Lauren Alleman, Andrew Peck, Rebecca Shirer

Matthews Nielsen

Kim Mathews

Project Goal

Develop a research plan that will advance the understanding of the benefits and costs of CGI strategies, ultimately facilitating the selection and implementation of projects which can most successfully improve resiliency in the New York City coastal environment

NEIWPCC

CGI Strategies

- Constructed wetlands and maritime forests
- Constructed reefs
- Constructed breakwater islands
- Channel shallowing
- Ecologically enhanced bulkheads and revetments
- Living shorelines (sill-type)

NEIWPCC

Methodology

- Literature review
- Team discussions
- Expert interviews
- Workshops
 - Project initiation
 - Existing Regulatory Framework
 - Review of Preliminary Research Agenda
 - Over 40 participants and 19 agencies
- Report reviews

3

Focus Areas

- Hazard mitigation potential
- Optimized Potential ecological benefits
- Possible failure causes
- Data required to design, plan, and implement

NEIWPCC

Regulatory

- Success stories in other states
- No easy assessment of hazards mitigation and ecological benefits
- A thorough habitat evaluation tradeoff is necessary
- Pilot studies relieve some of the regulatory burden by simplifying the approval of CGI

NEIWPCC

Report Structure

- A Regulatory considerations
- Six CGI strategies
 - Constructed wetlands and maritime forests
 - Constructed reefs
 - Constructed breakwater islands
 - Channel shallowing
 - Ecologically enhanced bulkheads and revetments
 - Living shorelines (sill-type)
- Data, monitoring and integration
- Research Agendas

NEIWPCC

Wetlands and Maritime Forests

Hazard Mitigation

- Laboratory and numerical modeling experiments are most common
- Field measurements during storm events are relatively rare
- Vegetation resistance is dependent on internal factors (stem density) and external (water depth) factors

Internal/External Factors

			Impacts on Vegetative Resistance	- 0
	Vegetation morphology	Height, stem/trunk diameter, branch, and foliage	Positively correlated	
jetati	Vegetation bio- mechanical properties	Stiffness of plant shoot (might vary seasonably)	Positively correlated	14
	Vegetation community	Stem density and communities arrangement	Positive correlated	
	Wetland continuity	Distance to main coast, edge fractal dimension, and ratio of vegetated land area to non- vegetated area (water area, road area, swales, mudflats, etc.)	Intact wetland has the highest bulk resistance	
	Horizontal extent	Distance in wave propagation or flooding direction	Positively correlated	
	Vertical extent	Platform elevation	Positively correlated	
	Topographic complexity	Arrangement of topographic features (hummocks, dunes, swales)	Unknown	1. 10 10
	Water surface elevation (surge height during a storm event)	Flow depth	Maximum resistance when flow depth is about the height of the vegetation (stem), i.e., near-emergent condition	
	Wave climates	Wave height and wave period	Not in consensus	1

NEIWPCC

Wetlands and Maritime Forests

Ecological Benefits

- Quantification/comparison of habitat values to support effective policymaking and management is necessary
- Review and improve existing habitat values evaluation tools, models and metrics
- Pilot projects recommended to collect data, test hypotheses, and to support the permitting process

NEIWPCC

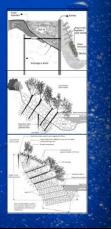
Reefs

- Wave dissipation is not as standard as traditional breakwaters
- Ecosystem benefits should be better understood
- Some guidance exists for siting, designing and regular monitoring
- Along the north Atlantic coast, reefs are highly susceptible to damage from debris, ice, and/or longshore shifting sediment

NEIWPCC

Breakwater Islands

- Benefits vary with project scale, structure, and habitat types
- Challenges associated with this strategy are planning, permitting, and constructing and maintaining a large in-water structure
- A large volume of sediment fill is required


Channel Shallowing

- Potential for inundation reduction and ecosystem integrity improvement
- Knowledge on sediment transport and budget is essential
- Urban features and human activities (e.g. water quality and navigation) play important roles affecting the targeted performance

NEIWPCC

Ecological Enhancements

- Lowering PH and texturizing or increasing the complexity of the surface, results in a more diverse recruitment
- The timing of initiation and project implementation is important (e.g. ice and uprooting)
- No standard design guidelines

NEIWPCC

Living Shorelines (sill type)

- The feature is a combination of sill, sediment fill and vegetation planting
- Sills can be easily adjusted to accommodate changes in water level due to rising seas
- Ice and wake damages need be considered
- No standard design guidelines

NEIWPCC

Data Management

- Effective data dissemination requires a crossagencies platform to unify the data format, to avoid duplicate efforts, and improve data availability
- Baseline Data Needs
 - Currents and wave
 - Ice (floating and build-up)
 - Wakes
 - Vegetation biomechanics
 - Other ecosystem indicators (e.g. species abundance)

Integration

- Conceptual models as non-quantitative planning tools are needed to synchronize science, data and policy across agencies.
- Monitoring programs for the regional baseline data and site-specific data collection are required

NEIWPCC

Research Agenda

- Sorted into two groups
 - Meta strategy
 - Strategy Specific
- How were Research Agendas scored?
 - Fundamental Principles
 - Chronology
 - Regional Applicability, and
 - Affordability

				Pri	oritiza	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	Miliam
	5.1.1	Develop conceptual model	0	3	3	2	
51	5.1.2	Identify/test metrics and control sites for habitat evaluation	0	3	3	3	t
Ecological Conceptual Model and Monitoring	5.1.3	Develop ecosystem data monitoring protocol (coordinating with 5.1.2)	0	2	3	3	t
Protocol Development	5.1.4	Identify/test metrics to quantify hazard mitigation performance	0	3	3	3	T
	5.1.5	Develop environment data monitoring protocol (coordinating with 5.1.4)	0	2	3	3	T
	5.2.1	Prioritize habitats and species	1	3	3	3	1
5.2 Development of	5.2.2	Review and development of rapid assessment tools comparing net benefits across habitats	1	3	3	3	1
Ecosystem Models and CGI Projects Prioritization	5.2.3	Review and development of ecosystem models for landscape changes	1	1	3	2	T
	5.2.4	Review and improve eco-path models used to predict fish biomass changes (coordinating with 5.2.1)	1	1	3	2	T

					Pri	oritizat	ion	
Agenda	Task	Brief	Description	Fundamental principles	Chronology	Regional Applicability	Affordability	Overall weight
	5.1.1	Develops	conceptual model	0	3	з	2	7
	5.1.2	Identify/test metrics and	Conceptual Mo	dole		1		
5.1 Ecological Conceptual Model and Monitoring	5.1.3	Develop ecosystem data i						
Protocol Development	5.1.4	Identify/test metrics to qu	 Develop, refine, ar common understa 			ient		
	5.1.5	Develop environment data	ecosystems and h	azard		tigati	on.	
	5.2.1	Prioritize	 Identify important ecological attribute 					
	5.2.2	Review and development of benefi	and	is and	4 11 19	JICA	015	
5.2 Development of	5.2.2						dinc	
	5.2.2	Review and development	 Integrate the curre 	nt un	der	stano		

				Identify critical species and habi overall agency goals				nt to	
Agenda	Task			Standardize and prioritize scree	ning	g cri			
	5.1.1			Apply NYC-specific research to	mod	dify	or a	add	
	5.1.2	Iden		this list of critical species					
5.1 cological Conceptual doctal and Monitoring rotocol Development								king	
Ecological Conceptual Model and Monitoring	5.1.3	Develo		Create an overall, agency-coord					
Ecological Conceptual	5.1.3 5.1.4	Develo Identif		Create an overall, agency-coord priority habitats and sites that w efficient permitting and design a	ll al	low	for		
Ecological Conceptual Model and Monitoring				priority habitats and sites that w	ll al	low	for		
Ecological Conceptual Model and Monitoring	5.1.4	Identif		priority habitats and sites that we efficient permitting and design a	ll al	low	for		
Ecological Conceptual Model and Monitoring Protocol Development 5.2 Development of	5.1.4	Identif Develop		priority habitats and sites that w efficient permitting and design a shoreline	ll al	low	for		
Ecological Conceptual Model and Monitoring Protocol Development	5.1.4 5.1.5 5.2.1	Identif Develop Review at	nd dev	priority habitats and sites that w efficient permitting and design a shoreline Phontize habitats and species velopment of rapid assessment tools comparing net	ll al long	low g the	for e	moi	

				Pri	oritizat	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Afford ability	weight
	5.1.1	Develop conceptual model	0	3	3	2	7
5.1	5.1.2	Identify/test metrics and control sites for habitat evaluation	0	3	3	3	9
5.1 Ecological Conceptual Model and Monitoring	5.1.3	Develop ecosystem data monitoring protocol (coordinating with 5.1.2)	0	2	з	3	8
Protocol Development	5.1.4	Identify/test metrics to quantify hazard mitigation performance	0	3	3	3	9
	6.1.5	Develop environment data monitoring protocol (coordinating with 5.1.4)	0	2	з	з	8
	5.2.1	Prioritize Monitoring proto	oco				
5.2 Development of	5.2.2	Review and development o benefi • Provide a framework			inati	na	
Ecosystem Models and CGI Projects Prioritization	5.2.3	Review and development monitoring efforts an					
	5.2.4	Review and improve eco-pa changes (c					

				Pri	oritiza	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Afford ability	weight
	5.3.1	Estimate an NYC area sediment budget	0	3	2	3	8
5.3 Sediment Study	5.3.2	Soil strength in NYC coast areas	0	3	1	2	6
	5.3.3	Identify sediment borrow sources and develop a regional sediment management plan	0	3	2	2	7
	5.4.1	Ice volume mapping	0	3	2	3	8
5.4	5.4.2	Assess the dynamic and static ice forces	1	2	2	2	7
Ice Study	5.4.3	Explore the risk of freezing damage on structures and vegetation types	1	2	2	2	7
	5.4.4	Improve the capability to model ice in existing hydrodynamic models	1	2	2	2	7
5.5 Vessel Wake	5.5.1	Determine locations throughout NYC to deploy measurement devices and obtain wake wave height measurements (requires instrument deployment)	0	1	3	1	5
Assessment	5.5.2	Create a wake wave atlas	0	3	3	3	9

					Prie	oritiza	tion	
Agenda	Task	Brief Description		Fundamental principles	Chronology	Regional Applicability	Affordability	weight
Allenda	5.3.1	Estimate an NYC area sediment budget		0	3	2	3	8
				0	3	1	2	6
	5.3.3		iment	0	3	2	2	7
	Sedim	ent Study		0	3	2	3	8
5.4		anding both the sediment budget and		1	2	2	2	7
Ice Study	sedimen	t longshore/cross-shore transport can	ion	1	2	2	2	7
		mportant insight into the nature of the tary system, landscape morphology,	с	1	2	2	2	7
		feasibility of particular CGI strategies.	nt es	0	1	3	1	5
5.5 Vessel Wake		instrument deploymenty						
Assessment	5.5.2	Create a wake wave atlas		0	3	3	3	9

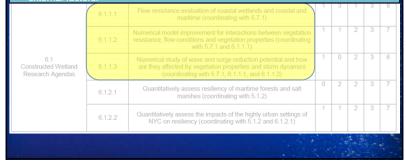
				Pri	oritiza	tion	_
Agenda	Impr	Study ove the guidance for incorporating ice	Fundamental principles	Chronology	Regional Applicability	Affordability	weight
		es into the design of both traditional and coastal protection works, including	0	3	2	3	8
5.3 Sediment Study		oting of vegetation.	0	3	1	2	6
			0	3	2	2	7
	5.4.1	Ice volume mapping	0	3	2	3	8
54	5.4.2	Assess the dynamic and static ice forces	1	2	2	2	7
ice Study	54.3	Explore the risk of freezing damage on structures and vegetation types	1	2	2	2	7
	5.4.4	Improve the capability to model ice in existing hydrodynamic models	1	2	2	2	7
5.5 Vessel Wake	5.5.1	Determine locations throughout NYC to deploy measurement devices and obtain wake wave height measurements (requires instrument deployment)	0	1	3	1	5
Assessment	5.5.2	Create a wake wave atlas	0	3	3	3	9

				Pri	oritiza	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	Overall weight
	5.3.1	Estimate an NYC area sediment budget	0	3	2	3	8
5.3 Sediment Study	5.3.2	Soil strength in NYC coast areas	0	3	1	2	6
	Ves	sel Wake Assessment	0	3	2	2	7
	Accur	ately establish the wave climate	0	3	2	3	8
5.4	includ	ing wakes. Wave height drives the	1	2	2	2	7
Ice Study	desig	n of many CGI projects.	1	2	2	2	7
			1	2	2	2	7
5.5 Vessel Wake	5.5.1	Determine locations throughout NYC to deploy measurement devices and obtain wake wave height measurements (requires instrument deployment)	0	1	3	1	5
		Create a wake wave atlas	0	3	3	3	9

				Pri	oritiza	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	weight
5.6 Cross-Agency Data and	5.6.1	Develop the observational data dissemination portal and data management plan coordinating conceptual models development (5.1) and data collection (5.8)	0	1	2	3	6
Metadata Management	5.6.2	Develop a project library including project metadata and taxonomy	0	3	3	3	ę
57	5.7.1	Flow resistance of Phragmites vs. Spartina (Manning's coefficient)	1	2	3	2	1
Comparison of Marsh Species - Phragmites and Spartina	5.7.2	Evaluate species diversity, abundance, and population of birds and other wildlife in the presence of Phragmites	1	3	3	1	8
	5.7.3	Revise and recommend <i>Phragmites</i> management practices (coordinating with 5.7.1 and 5.7.2)	0	1	1	3	
5.8 Pilot Project Identification.	5.8.1	Pilot project identification	1	3	3	3	1
Implementation and Monitoring (Living Laboratory)	5.8.2	Pilot project implementation and monitoring (coordinating with 5.1 and 5.6; time-demanding)	1	0	3	1	ę
5.9 Evaluation of the Regulatory Process	5.9.1	Research the existing regulatory framework, SAP requirements, and coordinate regulatory agencies	0	1	1	3	ę

				Pri	oritizat	ion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	weight
5.6 Cross-Agency Data and	5.6.1	Develop the observational data dissemination portal and data management plan coordinating conceptual models development (5.1) and data collection (5.8)	0	1	2	3	6
		Develop a project library including project metadata and taxonomy	0	3	3	3	9
5.7 Comparison of Marsh Species - Phragmites and Spartina 5.8 Pilot Project Identification, Implementation and Monitoring (Living	Abun basel which cross store for pr	ss-Agency Data and Metadata agement dant data can improve the understanding of ine conditions and can provide a better fra CGI projects will be designed and implem -agency data management tool is recomm and share available observational data an oposed and implemented projects in NYC ted project information including goals and	of N mev nente end d m to c	vorł ed. ed l etac enti	ralize	to e	8 5 10
Laboratory) 5.9 Evaluation of the	strate	agy types, innovative design concepts, imp enges, performance evaluations, lessons le	leme		ation		5

		Pri	oritizat	tion	
		Fund	Appl	Affor	W
Agenda	Pilot I	Project Identification, mentation, and Monitoring (Living		Affordability	weight
5.6		ratory)		3	
Cross-Agency Data and Metadata Management	Many hy and ecd	ypotheses related to the hazard mitigation potentia logical benefits of CGI strategies require field		3	
	observa	tion data to further evaluate and refine. Pilot proje	cts	2	t
57	that root	cally important to systematically address hypothes	IS illot	- I	
5.7 Comparison of Marsh Species -Phragmites and Spartina	projects	cally important to systematically address hypothes uire field observations and monitoring. Because p may be challenging to implement due to regulator t considerations, it is recommended that pilot stud	rv	1	-
Comparison of Marsh	projects and cos	cally important to systematically address hypothes uire field observations and monitoring. Because p may be challenging to implement due to regulator it considerations, it is recommended that pilot stud rea be prioritized prior to implementation.	rv	1	
Comparison of Marsh Species -Phragmites and Spartina 5.8 Pilot Project	projects and cos	may be challenging to implement due to regulator to considerations, it is recommended that pilot stud	rv	1 3 3	╞
Comparison of Marsh Species -Phragmites and Spartina 5.8	projects and cos in the ar	 may be challenging to implement due to regulator it considerations, it is recommended that pilot stud- rea be prioritized prior to implementation. 	ry ies		


NEIWPCC							
				Pri	oritizat	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	Overall weight
5.10 Shoreline assessment for appropriateness of CGI Strategy	5.10.1	Develop a mapping tool displaying possibilities for CGI integration into the NYC shoreline	0	2	3	2	7
5.11 Coastal Resiliency Benefits Quantification	5.11.1	Develop a methodology for quantifying coastal resiliency benefits	1	2	3	2	8
	6.1.1.1	Flow resistance evaluation of coastal wetlands and coastal and maritime (coordinating with 5.7.1)	1	3	1	3	8
	6.1.1.2	Numerical model improvement for interactions between vegetation resistance, flow conditions and vegetation properties (coordinating with 5.7.1 and 6.1.1.1)	1	1	2	3	7
6.1 Constructed Wetland Research Agendas	6.1.1.3	Numerical study of wave and surge reduction potential and how are they affected by vegetation properties and storm dynamics (coordinating with 5.7.1, 6.1.1.1, and 6.1.1.2)	1	0	2	3	6
	6.1.2.1	Quantitatively assess resiliency of maritime forests and salt marshes (coordinating with 5.1.2)	0	2	2	3	7
	6.1.2.2	Quantitatively assess the impacts of the highly urban settings of NYC on resiliency (coordinating with 5.1.2 and 6.1.2.1)	1	1	2	3	7

				Pri	oritizat	ion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	weight
5.10 Shoreline assessment for appropriateness of CGI Strategy	5 10 1	Develop a mapping tool displaying possibilities for CGI integration into the NYC shoreline	0	2	3	2	7
5.11 Coastal Resiliency	CGI	Strategy and Sheraline Brieri	6i	412	h		
Benefits Quantification		Strategy and Shoreline Priori					
6.1 Constructed Wetland Research Agendas	•	Mapping NYC shorelines with applicable, r CGI techniques using available data and n consideration of sea level rise impacts on o ecosystems (e.g., evaluate which ecosyste may shift quickly or disappear with sea lev Helping to prioritize projects throughout the make robust and data-backed decision.	nost netri critic ems el ris	: be cs, al a anc se).	nefic inclu at-ris I loca	ıdin k atio	

				Pri	oritizat	tion	
Agenda	Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	Overall weight
5.10 Shoreline assessment for appropriateness of CGI Strategy	5.10.1	Develop a mapping tool displaying possibilities for CGI integration into the NYC shoreline	0	2	3	2	7
5.11 Coastal Resiliency Benefits Quantification		Develop a methodology for quantifying coastal resiliency benefits	1	2	3	2	8
		CGI strategies generally have little to no in					

Vegetative Flow Resistance and Storm Wave Attenuation Potential of Salt Marsh and Maritime Forest

- Test existing vegetative resistance formula and friction coefficients;
- Examine the potential of intact and fragmented (patchy) wetland and maritime forests for reducing storm surge and waves; and
- Explore surge/wave reduction capability and its relationship with internal and external factors

			Pri	Prioritization			
Task	Brief Description	Fundamental principles	Chronology	Regional Applicability	Affordability	weight	
6.2.1.1	Quantify three-dimensional flow through complex reef units and improve the parameterization of bulk flow and wave dissipation	1	3	1	3	8	
6.2.1.2	Optimize project attributes to maximize hazard mitigation and favor fish/shellfish abundance (coordinating with 5.1.4, and 6.2.2)	1	1	3	1	6	
6.2.2.1	Examine monitoring criteria, critical impact factors, and adaptive management of reefs	1	1	3	2	7	
6.3.1.1	Search potential channel shallowing site and conduct numerical studies	1	3	1	3	8	
6.3.1.2	Develop methods for valuing flood reductions	1	3	1	3	8	
6.3.2.1	Develop numerical models for circulation and transport	1	3	1	3	8	
6.3.2.2	Quantify the integrity of the restored habitats at a specific location	0	1	1	3	5	
6.4.1	Define and standardize design rules for ecological enhancement	1	3	3	2	9	
6.4.2	Structural Benefits of Marine Growth on Marine Infrastructure	1	3	3	2	9	
6.5.1.1	Develop a protocol for the monitoring and assessment of living shorelines	1	2	3	3	9	
6.5.1.2	Define and standardize design guidelines for living shorelines	1	3	3	3	10	
	6212 6221 6311 6312 6321 6322 641 642 6511	6.2.1.1 Quantify three-dimensional flow through complex reef units and improve the parameterization of bulk flow and wave dissipation 6.2.1.2 Optimize project attributes to maximize hazard mitigation and favor ishtybellifish abundance (coordinating with 5.1.4, and 6.2.2) 6.2.2.1 Examine monitoring criteria, critical impact factors, and adaptive management of reefs 6.3.1.1 Search potential channel shallowing site and conduct numerical studies 6.3.1.2 Develop methods for valuing flood reductions 6.3.2.1 Develop methods for circulation and transport 6.3.2.2 Quantify the integrity of the restored habitats at a specific location 6.4.1 Define and standardize design rules for ecological enhancement 6.4.2 Structural Benefits of Marine Growth on Marine Infrastructure Develop a protocol for the monitoring and assessment of living shorelines	62.1.1 Quantify three-dimensional flow through complex reef units and improve the parameterization of bulk flow and wave dissipation 1 62.1.2 Optimize project attributes to maximize hazard mitigation and favor fish/shellifish abundance (coordinating with 5.14, and 6.2.2) 1 62.2.1 Examine monitoring criteria, critical impact factors, and adaptive fish/shellifish abundance (coordinating with 5.14, and 6.2.2) 1 6.2.2.1 Examine monitoring criteria, critical impact factors, and adaptive studies 1 6.3.1.1 Search potential channel shallowing site and conduct numerical studies 1 6.3.1.2 Develop methods for valuing flood reductions 1 6.3.2.1 Develop numerical models for circulation and transport 1 6.3.2.2 Quantify the integrity of the restored habitats at a specific location 0 6.4.1 Define and standardize design rules for ecological enhancement 1 6.4.2 Structural Benefits of Marine Growth on Marine Infrastructure 1 6.5.1.1 Develop a protocol for the monitoring and assessment of living 1	62.1.1 Quantify three-dimensional flow through complex reef units and improve the parameterization of bulk flow and wave dissipation 1 3 62.1.2 Optimize project attributes to maximize hazard mitigation and favor fish/shellifish abundance (coordinating with 5.14, and 6.2.2) 1 1 1 62.2.1 Examine monitoring criteria, critical impact factors, and adaptive fish/shellifish abundance (coordinating with 5.14, and 6.2.2) 1 1 1 6.2.2.1 Examine monitoring criteria, critical impact factors, and adaptive studies 1 3 6.3.1.1 Search potential channel shallowing site and conduct numerical studies 1 3 6.3.1.2 Develop methods for valuing flood reductions 1 3 6.3.2.2 Quantify the integrity of the restored habitats at a specific location 0 1 6.4.1 Define and standardize design rules for ecological enhancement 1 3 6.4.2 Structural Benefits of Marine Growth on Marine Infrastructure 1 3 6.5.1.1 Develop a protocol for the monitoring and assessment of living 1 2	62.1.1 Quantify three-dimensional flow through complex reef units and improve the parameterization of bulk flow and wave dissipation 1 3 1 62.1.2 Optimize project attributes to maximize hazard mitigation and favor fish/shellfish abundance (coordinating with 5.1.4, and 6.2.2) 1 1 1 3 1 6.2.1.2 Examine monitoring criteria, critical impact factors, and adaptive management of reefs 1 1 1 3 1 6.2.2.1 Examine monitoring criteria, critical impact factors, and adaptive management of reefs 1 1 3 1 6.3.1.1 Search potential channel shallowing site and conduct numerical studies 1 3 1 6.3.1.2 Develop methods for valuing flood reductions 1 3 1 6.3.2.1 Develop numerical models for circulation and transport 1 3 1 6.3.2.2 Quantify the integrity of the restored habitats at a specific location 0 1 1 6.4.2 Structural Benefits of Marine Growth on Marine Infrastructure 1 3 3 6.5.1.1 Develop a protocol for the monitoring and assessment of living shorelines 1 3	Autom Countify three-dimensional flow through complex reef units and improve the parameterization of bulk flow and wave dissipation 1 3 1 3 62.1.1 Optimize project attributes to maximize hazard miligation and favor fish/shellfish abundance (coordinating with 5.1.4, and 6.2.2) 1 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	

Antipic Standardizing Design Guidelines for Living Shorelines and Ecologically Enhanced Bulkheads and Revetments • Stone size, • armoring depth, • vegetation maintenance, • window spacing, and • distance of the sill from the shore edge. • distance of the sill from the shore edge. • Living Shoreline • distance of the sill from the shore edge. • distance • distance

Next Steps

- Partnership: DEC Hudson River Estuary Program, NYC Department of City Planning, the New York-New Jersey Harbor & Estuary Program
- Consensus Building Institute will assist with strategic planning and stakeholder interviews to ID ways to move the plan forward in the years to come.

Welcome ideas and suggestions!

NEIWPCC

Questions & Answers

- We will be posting this webinar and future research-related webinars at neiwpcc.org
- Follow @NEIWPCC to keep up-to-date
- **THANK YOU!**