Automatic and Near-Real Time Monitoring for Cyanobacteria

Greg Boyer,

State Univ. New York- College of Environmental Science and Forestry (ESF) in Syracuse NY

Elizabeth Knopko (MS) Margaret Pavlac (PhD) Jeremy Sullivan (PhD)

October 7th, 2007

Bloom first detected by our sensor on the monitoring buoy!

66/0

Great Lakes are big!

Ferry boxes offer a solution to this problem:

- Sample continuously while ship is underway:
- > 30-60 sec per data point
- > 20,000-80,000 points
- > 100m resolution

Fluorometer List

Chlorophyll

- TD AlgalWatch
- HydroLab DS5
- YSI 6600 sonde
- BBE FluoroProbe
- Turner Designs 10-AU
- Turner Designs Cyclops

Phycocyanin

- TD CyanoWatch
- HydroLab DS5
- YSI 6600 Sonde
- BBE (Cyano-specific Chl)
- Turner Designs 10-AU
- Turner Designs Cyclops
 PC, PE, CDOM, CHL

Primer on Chlorophyll fluorescence

- EPA 445.0
- Extract in acetone
- Excite the chl chromophore.
- Look at the energy given off when the chromophore relaxes.

In vitro (in glass)

In vivo is not in vitro!

Exciting an intact organism

Most energy goes through the electron transport system. Some spills out (PS II only!) Assume that spill is a constant percentage.

Typical Results:

eefo

Typical Results:

Start to differentiate between blooms:

Figure 8: Phycocyanin Distribution on Lake Erie, July 2007

Chlorophyll-a rich blooms occurred in several areas lacking PC; these were are likely due to diatoms or green algae

Some high chlorophyll events were associated with cyanobacterial PC

Very high resolution studies Genesee River (Rochester NY)

Specific Conductance

Chlorophyll

Multi-channel sensors provide even more information:

Excite at 5 different Wavelengths

Single emission

- Green Algae
- Dinoflagellates and diatoms
- Blue-green algae
 - Phycocyanin containing
 - Phycoerythrin containing
- Others including crytophytes
 Vollow substance correction

eefo^Yellow substance correction

Fig. 1: Assignment of several algal divisions in spectral groups

BBE FluoroProbe

Surface Cyanobacteria bloom

Sub-Surface diatom bloom Sub-Surface PE bloom

> Hypolimnetic Sub-Surface PE-rich bloom

These can be installed in Ferry Box systems also...

Can we differentiate at the genus level?

Figure 3: Diagram of the Optical Phytoplankton Discriminator.

Generate a similarity index based on 4th derivative spectrum

Figure 6: Similarity index results for pairwise comparisons of four *Ananabaena* strains, seven *Microcystis* strains, and *Chlorella vulgaris*.

e9⁄0

Next generation of sensors needs to be specific for the toxins themselves....

MBARI Environmental Sample Processor (ESP) **Robotic Multiprobe:**

- Species by 16S RNA
- Toxin by ELISA

Suitable for open ocean deployment

Sensor Functional Description

Coupled lightwave propagates inside waveguide by total internal reflection

 0^{-}

15

30

45

Time (minutes)

60

But we have a long long way to go!

- QUALITATIVE autonomous detection of chlorophyll on buoys and boats is a here.
- QUANTITATIVE detection requires knowledge of the phytoplankton population.

• New techniques allow for detection at the family FluoroProbe) and Genus (brevebuster)

• Careful of your biochemistry!

