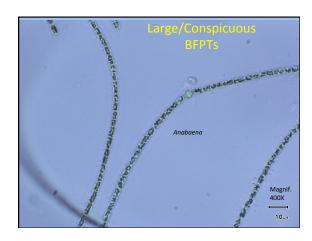
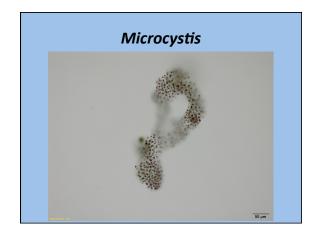
Cyanobacteria Monitoring:

Jim Haney UNH Center for Freshwater Biology

- Monitoring Objectives:
- 1. Assess Events (e.g. blooms)
- 2. Identify trends and changes3. Explain Causal Relationships4. Other?

Cyanobacteria

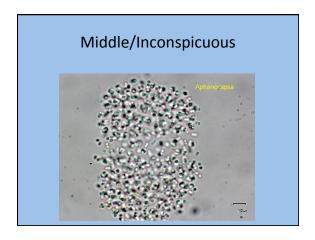

- Problem world wide: people are cyanos best
- "Natural" component of lakes
- · Increasing understanding of complexity of

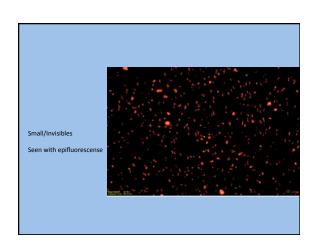

Ecological Considerations Cyanobacteria:

- 1. Size
- 2. Distribution
- 3. Toxicity

SIZE & Visibility

- A. Large/Conspicuous Cyanobacteria: form surface blooms and often produce toxins (BFPTs): Bloom-forming, potentially toxigenic
- B. Medium/Inconspicuous Cyanobacteria, often below surface
- C. Small/Invisible Cyanobacteria, requiring special techniques to visualize




BFPTC Monitoring Objectives

- Trend Tracking: monitor the abundance of BFPTCs
- Bloom Watching: monitoring the location and composition of BFPTCs

Benefits: addresses phenomenon of public concern Disadvantages:

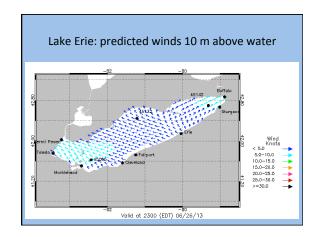
- does not provide data on lake population of cyanobacteria
- Highly ephemeral and weather dependent

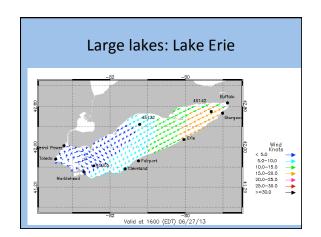
Monitoring Responses

- BFPTs
- Monitoring Techniques
 - Bloom Watch

Microscope counts

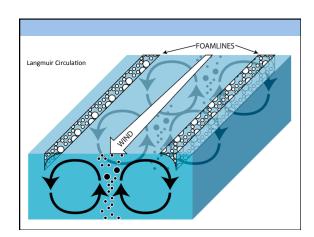
Medium/Inconspicuous Cyanobacteria Rarely monitored, included in some microscope counts, need vertically integrated samples, included with fluorescence counts

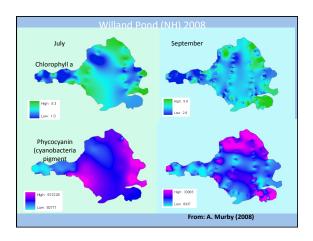

Small/Invisible Picocyanobacteria
Included in PC fluorescence counts
Direct microscope counts counts use auto-fluorescence


Distribution: Patchiness

- · Surface Blooms Greatest Heterogeneity
 - Wind-generated currents: eddies and circulation

BFPTs have gas vessicles

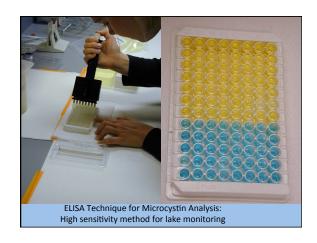


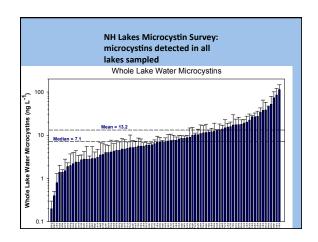


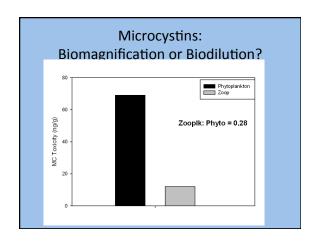
Sampling Design Important

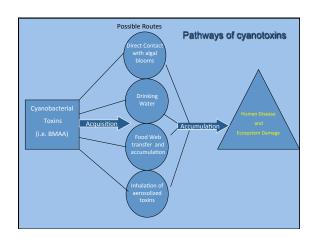
Cyanobacteria Toxicity

Toxin Concentrations


Phytoplankton Toxicity


Which Cyanotoxin?


Candidate Cyanotoxins Microcystins Hepotatoxin 20-60 Nodularins Hepatotoxin Cylindrospermopsin Hepatotoxin 300 Anatoxin-a Neurotoxin 200 20 (Anatoxin aS) BMAA Neurotoxin Saxitoxin (Neosaxitoxin) 10 Neurotoxin


Cyanobacteria	Toxins produced
<u>Anabaena</u>	Anatoxins, Microcystins, Saxitoxins
Anabaenopsis	Microcystins
Aphanizomenon	Saxitoxins, Cylindrospermopsins
Cylindrospermopsis	<u>Cylindrospermopsins</u> , <u>Saxitoxins</u>
Hapalosiphon	Microcystins
Lyngbya	Aplysiatoxins, Lyngbyatoxin a
Microcystis	Microcystins
Nodularia	Nodularin
Nostoc	Microcystins
Phormidium (Oscillatoria)	Anatoxin
Planktothrix (Oscillatoria)	Anatoxins, Aplysiatoxins, Microcystins, Saxitoxins
Schizothrix	Aplysiatoxins
Trichodesmium	yet to be identified
Umezakia	Cylindrospermopsin

